Properties

Label 684.2.r.a.487.5
Level $684$
Weight $2$
Character 684.487
Analytic conductor $5.462$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [684,2,Mod(487,684)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(684, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("684.487");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 6 x^{14} - 9 x^{13} + 12 x^{12} - 9 x^{11} + 3 x^{10} + 6 x^{9} - 10 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 487.5
Root \(0.570443 - 1.29406i\) of defining polynomial
Character \(\chi\) \(=\) 684.487
Dual form 684.2.r.a.559.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.570443 + 1.29406i) q^{2} +(-1.34919 + 1.47638i) q^{4} +(1.60333 + 2.77705i) q^{5} +1.25044i q^{7} +(-2.68016 - 0.903746i) q^{8} +(-2.67906 + 3.65895i) q^{10} +2.11093i q^{11} +(2.12978 + 1.22963i) q^{13} +(-1.61815 + 0.713305i) q^{14} +(-0.359374 - 3.98382i) q^{16} +(-0.765026 - 1.32506i) q^{17} +(3.76307 - 2.19984i) q^{19} +(-6.26316 - 1.37965i) q^{20} +(-2.73167 + 1.20416i) q^{22} +(-7.61951 - 4.39913i) q^{23} +(-2.64132 + 4.57491i) q^{25} +(-0.376297 + 3.45750i) q^{26} +(-1.84612 - 1.68708i) q^{28} +(5.20937 + 3.00763i) q^{29} -7.78947 q^{31} +(4.95031 - 2.73760i) q^{32} +(1.27831 - 1.74586i) q^{34} +(-3.47253 + 2.00487i) q^{35} +9.97599i q^{37} +(4.99335 + 3.61476i) q^{38} +(-1.78743 - 8.89192i) q^{40} +(-1.09450 + 0.631908i) q^{41} +(5.04619 - 2.91342i) q^{43} +(-3.11653 - 2.84804i) q^{44} +(1.34624 - 12.3696i) q^{46} +(6.12910 + 3.53864i) q^{47} +5.43640 q^{49} +(-7.42693 - 0.808311i) q^{50} +(-4.68887 + 1.48535i) q^{52} +(-6.18988 - 3.57373i) q^{53} +(-5.86215 + 3.38451i) q^{55} +(1.13008 - 3.35138i) q^{56} +(-0.920411 + 8.45692i) q^{58} +(-2.83541 - 4.91107i) q^{59} +(2.80998 - 4.86704i) q^{61} +(-4.44345 - 10.0801i) q^{62} +(6.36649 + 4.84436i) q^{64} +7.88599i q^{65} +(0.0235835 - 0.0408478i) q^{67} +(2.98846 + 0.658296i) q^{68} +(-4.57530 - 3.35000i) q^{70} +(-3.12595 - 5.41430i) q^{71} +(0.658098 + 1.13986i) q^{73} +(-12.9095 + 5.69073i) q^{74} +(-1.82930 + 8.52371i) q^{76} -2.63959 q^{77} +(3.77194 + 6.53320i) q^{79} +(10.4871 - 7.38538i) q^{80} +(-1.44208 - 1.05588i) q^{82} +7.84164i q^{83} +(2.45317 - 4.24902i) q^{85} +(6.64871 + 4.86814i) q^{86} +(1.90774 - 5.65762i) q^{88} +(6.02458 + 3.47830i) q^{89} +(-1.53758 + 2.66316i) q^{91} +(16.7749 - 5.31401i) q^{92} +(-1.08291 + 9.95003i) q^{94} +(12.1425 + 6.92315i) q^{95} +(8.51935 - 4.91865i) q^{97} +(3.10116 + 7.03503i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 3 q^{2} - 3 q^{4} + 2 q^{5} - 6 q^{10} - 18 q^{13} + 6 q^{14} - 3 q^{16} - 2 q^{17} - 4 q^{20} + 3 q^{22} - 2 q^{25} + 24 q^{26} - 4 q^{28} + 6 q^{29} - 27 q^{32} + 36 q^{34} + 24 q^{38} + 48 q^{40}+ \cdots - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.570443 + 1.29406i 0.403364 + 0.915040i
\(3\) 0 0
\(4\) −1.34919 + 1.47638i −0.674595 + 0.738188i
\(5\) 1.60333 + 2.77705i 0.717030 + 1.24193i 0.962171 + 0.272445i \(0.0878324\pi\)
−0.245141 + 0.969487i \(0.578834\pi\)
\(6\) 0 0
\(7\) 1.25044i 0.472622i 0.971677 + 0.236311i \(0.0759384\pi\)
−0.971677 + 0.236311i \(0.924062\pi\)
\(8\) −2.68016 0.903746i −0.947579 0.319522i
\(9\) 0 0
\(10\) −2.67906 + 3.65895i −0.847193 + 1.15706i
\(11\) 2.11093i 0.636469i 0.948012 + 0.318234i \(0.103090\pi\)
−0.948012 + 0.318234i \(0.896910\pi\)
\(12\) 0 0
\(13\) 2.12978 + 1.22963i 0.590695 + 0.341038i 0.765372 0.643588i \(-0.222555\pi\)
−0.174678 + 0.984626i \(0.555888\pi\)
\(14\) −1.61815 + 0.713305i −0.432468 + 0.190639i
\(15\) 0 0
\(16\) −0.359374 3.98382i −0.0898436 0.995956i
\(17\) −0.765026 1.32506i −0.185546 0.321375i 0.758214 0.652005i \(-0.226072\pi\)
−0.943760 + 0.330630i \(0.892739\pi\)
\(18\) 0 0
\(19\) 3.76307 2.19984i 0.863308 0.504678i
\(20\) −6.26316 1.37965i −1.40048 0.308498i
\(21\) 0 0
\(22\) −2.73167 + 1.20416i −0.582394 + 0.256729i
\(23\) −7.61951 4.39913i −1.58878 0.917282i −0.993509 0.113756i \(-0.963712\pi\)
−0.595270 0.803526i \(-0.702955\pi\)
\(24\) 0 0
\(25\) −2.64132 + 4.57491i −0.528265 + 0.914981i
\(26\) −0.376297 + 3.45750i −0.0737980 + 0.678071i
\(27\) 0 0
\(28\) −1.84612 1.68708i −0.348884 0.318828i
\(29\) 5.20937 + 3.00763i 0.967356 + 0.558503i 0.898429 0.439119i \(-0.144709\pi\)
0.0689265 + 0.997622i \(0.478043\pi\)
\(30\) 0 0
\(31\) −7.78947 −1.39903 −0.699515 0.714618i \(-0.746601\pi\)
−0.699515 + 0.714618i \(0.746601\pi\)
\(32\) 4.95031 2.73760i 0.875099 0.483943i
\(33\) 0 0
\(34\) 1.27831 1.74586i 0.219228 0.299413i
\(35\) −3.47253 + 2.00487i −0.586965 + 0.338884i
\(36\) 0 0
\(37\) 9.97599i 1.64004i 0.572334 + 0.820021i \(0.306038\pi\)
−0.572334 + 0.820021i \(0.693962\pi\)
\(38\) 4.99335 + 3.61476i 0.810028 + 0.586391i
\(39\) 0 0
\(40\) −1.78743 8.89192i −0.282617 1.40594i
\(41\) −1.09450 + 0.631908i −0.170932 + 0.0986875i −0.583025 0.812454i \(-0.698131\pi\)
0.412093 + 0.911142i \(0.364798\pi\)
\(42\) 0 0
\(43\) 5.04619 2.91342i 0.769537 0.444292i −0.0631725 0.998003i \(-0.520122\pi\)
0.832709 + 0.553710i \(0.186789\pi\)
\(44\) −3.11653 2.84804i −0.469834 0.429359i
\(45\) 0 0
\(46\) 1.34624 12.3696i 0.198493 1.82379i
\(47\) 6.12910 + 3.53864i 0.894022 + 0.516164i 0.875256 0.483660i \(-0.160693\pi\)
0.0187658 + 0.999824i \(0.494026\pi\)
\(48\) 0 0
\(49\) 5.43640 0.776629
\(50\) −7.42693 0.808311i −1.05033 0.114312i
\(51\) 0 0
\(52\) −4.68887 + 1.48535i −0.650230 + 0.205982i
\(53\) −6.18988 3.57373i −0.850246 0.490890i 0.0104881 0.999945i \(-0.496661\pi\)
−0.860734 + 0.509055i \(0.829995\pi\)
\(54\) 0 0
\(55\) −5.86215 + 3.38451i −0.790452 + 0.456367i
\(56\) 1.13008 3.35138i 0.151013 0.447846i
\(57\) 0 0
\(58\) −0.920411 + 8.45692i −0.120856 + 1.11045i
\(59\) −2.83541 4.91107i −0.369138 0.639367i 0.620293 0.784371i \(-0.287014\pi\)
−0.989431 + 0.145004i \(0.953681\pi\)
\(60\) 0 0
\(61\) 2.80998 4.86704i 0.359782 0.623160i −0.628142 0.778098i \(-0.716185\pi\)
0.987924 + 0.154938i \(0.0495178\pi\)
\(62\) −4.44345 10.0801i −0.564319 1.28017i
\(63\) 0 0
\(64\) 6.36649 + 4.84436i 0.795811 + 0.605545i
\(65\) 7.88599i 0.978137i
\(66\) 0 0
\(67\) 0.0235835 0.0408478i 0.00288118 0.00499036i −0.864581 0.502493i \(-0.832416\pi\)
0.867462 + 0.497503i \(0.165750\pi\)
\(68\) 2.98846 + 0.658296i 0.362404 + 0.0798301i
\(69\) 0 0
\(70\) −4.57530 3.35000i −0.546853 0.400402i
\(71\) −3.12595 5.41430i −0.370982 0.642559i 0.618735 0.785600i \(-0.287645\pi\)
−0.989717 + 0.143041i \(0.954312\pi\)
\(72\) 0 0
\(73\) 0.658098 + 1.13986i 0.0770245 + 0.133410i 0.901965 0.431809i \(-0.142125\pi\)
−0.824940 + 0.565220i \(0.808791\pi\)
\(74\) −12.9095 + 5.69073i −1.50070 + 0.661534i
\(75\) 0 0
\(76\) −1.82930 + 8.52371i −0.209835 + 0.977737i
\(77\) −2.63959 −0.300809
\(78\) 0 0
\(79\) 3.77194 + 6.53320i 0.424377 + 0.735042i 0.996362 0.0852216i \(-0.0271598\pi\)
−0.571985 + 0.820264i \(0.693826\pi\)
\(80\) 10.4871 7.38538i 1.17249 0.825710i
\(81\) 0 0
\(82\) −1.44208 1.05588i −0.159251 0.116602i
\(83\) 7.84164i 0.860732i 0.902655 + 0.430366i \(0.141615\pi\)
−0.902655 + 0.430366i \(0.858385\pi\)
\(84\) 0 0
\(85\) 2.45317 4.24902i 0.266084 0.460871i
\(86\) 6.64871 + 4.86814i 0.716949 + 0.524945i
\(87\) 0 0
\(88\) 1.90774 5.65762i 0.203366 0.603104i
\(89\) 6.02458 + 3.47830i 0.638605 + 0.368699i 0.784077 0.620664i \(-0.213137\pi\)
−0.145472 + 0.989362i \(0.546470\pi\)
\(90\) 0 0
\(91\) −1.53758 + 2.66316i −0.161182 + 0.279175i
\(92\) 16.7749 5.31401i 1.74891 0.554024i
\(93\) 0 0
\(94\) −1.08291 + 9.95003i −0.111694 + 1.02627i
\(95\) 12.1425 + 6.92315i 1.24579 + 0.710300i
\(96\) 0 0
\(97\) 8.51935 4.91865i 0.865009 0.499413i −0.000677265 1.00000i \(-0.500216\pi\)
0.865687 + 0.500586i \(0.166882\pi\)
\(98\) 3.10116 + 7.03503i 0.313264 + 0.710646i
\(99\) 0 0
\(100\) −3.19064 10.0720i −0.319064 1.00720i
\(101\) 3.13338 5.42717i 0.311783 0.540024i −0.666965 0.745089i \(-0.732407\pi\)
0.978748 + 0.205065i \(0.0657405\pi\)
\(102\) 0 0
\(103\) −0.526662 −0.0518936 −0.0259468 0.999663i \(-0.508260\pi\)
−0.0259468 + 0.999663i \(0.508260\pi\)
\(104\) −4.59687 5.22038i −0.450760 0.511900i
\(105\) 0 0
\(106\) 1.09365 10.0487i 0.106225 0.976016i
\(107\) 6.91564 0.668560 0.334280 0.942474i \(-0.391507\pi\)
0.334280 + 0.942474i \(0.391507\pi\)
\(108\) 0 0
\(109\) −10.4902 + 6.05651i −1.00478 + 0.580109i −0.909658 0.415357i \(-0.863657\pi\)
−0.0951195 + 0.995466i \(0.530323\pi\)
\(110\) −7.72379 5.65531i −0.736434 0.539212i
\(111\) 0 0
\(112\) 4.98153 0.449376i 0.470711 0.0424621i
\(113\) 4.95424i 0.466056i 0.972470 + 0.233028i \(0.0748633\pi\)
−0.972470 + 0.233028i \(0.925137\pi\)
\(114\) 0 0
\(115\) 28.2130i 2.63087i
\(116\) −11.4688 + 3.63313i −1.06485 + 0.337327i
\(117\) 0 0
\(118\) 4.73779 6.47067i 0.436149 0.595674i
\(119\) 1.65691 0.956619i 0.151889 0.0876931i
\(120\) 0 0
\(121\) 6.54398 0.594907
\(122\) 7.90118 + 0.859926i 0.715339 + 0.0778541i
\(123\) 0 0
\(124\) 10.5095 11.5002i 0.943779 1.03275i
\(125\) −0.906349 −0.0810663
\(126\) 0 0
\(127\) −2.86262 + 4.95820i −0.254016 + 0.439969i −0.964628 0.263616i \(-0.915085\pi\)
0.710612 + 0.703584i \(0.248418\pi\)
\(128\) −2.63718 + 11.0021i −0.233096 + 0.972454i
\(129\) 0 0
\(130\) −10.2050 + 4.49851i −0.895034 + 0.394545i
\(131\) 16.1689 9.33512i 1.41268 0.815613i 0.417043 0.908887i \(-0.363067\pi\)
0.995640 + 0.0932738i \(0.0297332\pi\)
\(132\) 0 0
\(133\) 2.75077 + 4.70549i 0.238522 + 0.408018i
\(134\) 0.0663126 + 0.00721715i 0.00572854 + 0.000623466i
\(135\) 0 0
\(136\) 0.852869 + 4.24277i 0.0731329 + 0.363814i
\(137\) 9.96622 17.2620i 0.851471 1.47479i −0.0284092 0.999596i \(-0.509044\pi\)
0.879880 0.475195i \(-0.157623\pi\)
\(138\) 0 0
\(139\) 9.04013 + 5.21932i 0.766774 + 0.442697i 0.831723 0.555191i \(-0.187355\pi\)
−0.0649485 + 0.997889i \(0.520688\pi\)
\(140\) 1.72516 7.83170i 0.145803 0.661900i
\(141\) 0 0
\(142\) 5.22326 7.13372i 0.438326 0.598648i
\(143\) −2.59566 + 4.49581i −0.217060 + 0.375959i
\(144\) 0 0
\(145\) 19.2889i 1.60185i
\(146\) −1.09964 + 1.50184i −0.0910068 + 0.124293i
\(147\) 0 0
\(148\) −14.7283 13.4595i −1.21066 1.10636i
\(149\) 4.83307 + 8.37113i 0.395941 + 0.685789i 0.993221 0.116243i \(-0.0370853\pi\)
−0.597280 + 0.802033i \(0.703752\pi\)
\(150\) 0 0
\(151\) 11.1033 0.903573 0.451787 0.892126i \(-0.350787\pi\)
0.451787 + 0.892126i \(0.350787\pi\)
\(152\) −12.0737 + 2.49506i −0.979308 + 0.202376i
\(153\) 0 0
\(154\) −1.50574 3.41579i −0.121336 0.275252i
\(155\) −12.4891 21.6317i −1.00315 1.73750i
\(156\) 0 0
\(157\) −5.65983 9.80311i −0.451704 0.782374i 0.546788 0.837271i \(-0.315850\pi\)
−0.998492 + 0.0548972i \(0.982517\pi\)
\(158\) −6.30268 + 8.60795i −0.501414 + 0.684811i
\(159\) 0 0
\(160\) 15.5394 + 9.35797i 1.22850 + 0.739813i
\(161\) 5.50085 9.52774i 0.433527 0.750891i
\(162\) 0 0
\(163\) 15.6778i 1.22798i 0.789312 + 0.613992i \(0.210437\pi\)
−0.789312 + 0.613992i \(0.789563\pi\)
\(164\) 0.543750 2.46845i 0.0424597 0.192754i
\(165\) 0 0
\(166\) −10.1476 + 4.47321i −0.787603 + 0.347188i
\(167\) −1.80453 + 3.12555i −0.139639 + 0.241862i −0.927360 0.374170i \(-0.877928\pi\)
0.787721 + 0.616032i \(0.211261\pi\)
\(168\) 0 0
\(169\) −3.47603 6.02065i −0.267387 0.463127i
\(170\) 6.89789 + 0.750733i 0.529044 + 0.0575786i
\(171\) 0 0
\(172\) −2.50696 + 11.3808i −0.191154 + 0.867780i
\(173\) 4.46906 2.58021i 0.339776 0.196170i −0.320397 0.947283i \(-0.603816\pi\)
0.660173 + 0.751113i \(0.270483\pi\)
\(174\) 0 0
\(175\) −5.72065 3.30282i −0.432440 0.249669i
\(176\) 8.40957 0.758614i 0.633895 0.0571827i
\(177\) 0 0
\(178\) −1.06445 + 9.78035i −0.0797836 + 0.733068i
\(179\) 2.76216 0.206454 0.103227 0.994658i \(-0.467083\pi\)
0.103227 + 0.994658i \(0.467083\pi\)
\(180\) 0 0
\(181\) 2.07870 + 1.20014i 0.154509 + 0.0892056i 0.575261 0.817970i \(-0.304901\pi\)
−0.420752 + 0.907176i \(0.638234\pi\)
\(182\) −4.32339 0.470537i −0.320471 0.0348785i
\(183\) 0 0
\(184\) 16.4458 + 18.6765i 1.21240 + 1.37685i
\(185\) −27.7038 + 15.9948i −2.03682 + 1.17596i
\(186\) 0 0
\(187\) 2.79711 1.61491i 0.204545 0.118094i
\(188\) −13.4937 + 4.27457i −0.984128 + 0.311755i
\(189\) 0 0
\(190\) −2.03238 + 19.6624i −0.147444 + 1.42646i
\(191\) 4.38525i 0.317305i 0.987334 + 0.158653i \(0.0507150\pi\)
−0.987334 + 0.158653i \(0.949285\pi\)
\(192\) 0 0
\(193\) −7.76503 + 4.48314i −0.558939 + 0.322703i −0.752719 0.658341i \(-0.771258\pi\)
0.193781 + 0.981045i \(0.437925\pi\)
\(194\) 11.2248 + 8.21876i 0.805897 + 0.590072i
\(195\) 0 0
\(196\) −7.33473 + 8.02617i −0.523910 + 0.573298i
\(197\) −1.39218 −0.0991890 −0.0495945 0.998769i \(-0.515793\pi\)
−0.0495945 + 0.998769i \(0.515793\pi\)
\(198\) 0 0
\(199\) 0.241956 + 0.139694i 0.0171518 + 0.00990261i 0.508551 0.861032i \(-0.330181\pi\)
−0.491400 + 0.870934i \(0.663515\pi\)
\(200\) 11.2137 9.87438i 0.792929 0.698224i
\(201\) 0 0
\(202\) 8.81051 + 0.958893i 0.619905 + 0.0674675i
\(203\) −3.76086 + 6.51400i −0.263961 + 0.457193i
\(204\) 0 0
\(205\) −3.50968 2.02631i −0.245126 0.141524i
\(206\) −0.300431 0.681533i −0.0209320 0.0474847i
\(207\) 0 0
\(208\) 4.13324 8.92656i 0.286588 0.618946i
\(209\) 4.64371 + 7.94357i 0.321212 + 0.549468i
\(210\) 0 0
\(211\) −0.0832510 0.144195i −0.00573123 0.00992679i 0.863146 0.504955i \(-0.168491\pi\)
−0.868877 + 0.495028i \(0.835158\pi\)
\(212\) 13.6275 4.31696i 0.935940 0.296490i
\(213\) 0 0
\(214\) 3.94498 + 8.94926i 0.269673 + 0.611759i
\(215\) 16.1814 + 9.34234i 1.10356 + 0.637142i
\(216\) 0 0
\(217\) 9.74027i 0.661212i
\(218\) −13.8216 10.1201i −0.936114 0.685417i
\(219\) 0 0
\(220\) 2.91233 13.2211i 0.196350 0.891365i
\(221\) 3.76279i 0.253113i
\(222\) 0 0
\(223\) −5.86577 10.1598i −0.392801 0.680352i 0.600017 0.799987i \(-0.295161\pi\)
−0.992818 + 0.119636i \(0.961827\pi\)
\(224\) 3.42320 + 6.19007i 0.228722 + 0.413591i
\(225\) 0 0
\(226\) −6.41109 + 2.82611i −0.426459 + 0.187990i
\(227\) 8.78264 0.582924 0.291462 0.956582i \(-0.405858\pi\)
0.291462 + 0.956582i \(0.405858\pi\)
\(228\) 0 0
\(229\) −6.53352 −0.431747 −0.215874 0.976421i \(-0.569260\pi\)
−0.215874 + 0.976421i \(0.569260\pi\)
\(230\) 36.5093 16.0939i 2.40735 1.06120i
\(231\) 0 0
\(232\) −11.2438 12.7689i −0.738191 0.838317i
\(233\) −13.1315 22.7444i −0.860274 1.49004i −0.871664 0.490103i \(-0.836959\pi\)
0.0113904 0.999935i \(-0.496374\pi\)
\(234\) 0 0
\(235\) 22.6944i 1.48042i
\(236\) 11.0761 + 2.43984i 0.720992 + 0.158820i
\(237\) 0 0
\(238\) 2.18310 + 1.59845i 0.141509 + 0.103612i
\(239\) 23.5704i 1.52464i 0.647198 + 0.762322i \(0.275941\pi\)
−0.647198 + 0.762322i \(0.724059\pi\)
\(240\) 0 0
\(241\) −13.5642 7.83128i −0.873746 0.504457i −0.00515448 0.999987i \(-0.501641\pi\)
−0.868591 + 0.495529i \(0.834974\pi\)
\(242\) 3.73297 + 8.46831i 0.239964 + 0.544364i
\(243\) 0 0
\(244\) 3.39438 + 10.7152i 0.217303 + 0.685967i
\(245\) 8.71633 + 15.0971i 0.556866 + 0.964520i
\(246\) 0 0
\(247\) 10.7195 0.0579979i 0.682065 0.00369032i
\(248\) 20.8770 + 7.03970i 1.32569 + 0.447022i
\(249\) 0 0
\(250\) −0.517020 1.17287i −0.0326992 0.0741789i
\(251\) −22.1575 12.7926i −1.39857 0.807463i −0.404324 0.914616i \(-0.632493\pi\)
−0.994243 + 0.107153i \(0.965827\pi\)
\(252\) 0 0
\(253\) 9.28625 16.0842i 0.583821 1.01121i
\(254\) −8.04917 0.876033i −0.505050 0.0549672i
\(255\) 0 0
\(256\) −15.7417 + 2.86337i −0.983856 + 0.178961i
\(257\) −17.4440 10.0713i −1.08813 0.628229i −0.155049 0.987907i \(-0.549553\pi\)
−0.933077 + 0.359677i \(0.882887\pi\)
\(258\) 0 0
\(259\) −12.4744 −0.775120
\(260\) −11.6427 10.6397i −0.722049 0.659846i
\(261\) 0 0
\(262\) 21.3037 + 15.5984i 1.31614 + 0.963672i
\(263\) −3.14828 + 1.81766i −0.194131 + 0.112082i −0.593915 0.804528i \(-0.702419\pi\)
0.399784 + 0.916609i \(0.369085\pi\)
\(264\) 0 0
\(265\) 22.9194i 1.40793i
\(266\) −4.52004 + 6.24388i −0.277141 + 0.382837i
\(267\) 0 0
\(268\) 0.0284881 + 0.0899296i 0.00174019 + 0.00549332i
\(269\) −15.9194 + 9.19106i −0.970622 + 0.560389i −0.899426 0.437073i \(-0.856015\pi\)
−0.0711964 + 0.997462i \(0.522682\pi\)
\(270\) 0 0
\(271\) 16.7304 9.65930i 1.01630 0.586761i 0.103269 0.994653i \(-0.467070\pi\)
0.913030 + 0.407893i \(0.133736\pi\)
\(272\) −5.00389 + 3.52392i −0.303405 + 0.213669i
\(273\) 0 0
\(274\) 28.0232 + 3.04991i 1.69295 + 0.184252i
\(275\) −9.65730 5.57564i −0.582357 0.336224i
\(276\) 0 0
\(277\) −16.5581 −0.994879 −0.497440 0.867499i \(-0.665726\pi\)
−0.497440 + 0.867499i \(0.665726\pi\)
\(278\) −1.59724 + 14.6758i −0.0957964 + 0.880197i
\(279\) 0 0
\(280\) 11.1188 2.23507i 0.664476 0.133571i
\(281\) −3.45491 1.99469i −0.206103 0.118993i 0.393396 0.919369i \(-0.371300\pi\)
−0.599499 + 0.800376i \(0.704633\pi\)
\(282\) 0 0
\(283\) −12.8457 + 7.41645i −0.763596 + 0.440862i −0.830585 0.556892i \(-0.811994\pi\)
0.0669896 + 0.997754i \(0.478661\pi\)
\(284\) 12.2110 + 2.68984i 0.724592 + 0.159613i
\(285\) 0 0
\(286\) −7.29853 0.794337i −0.431571 0.0469701i
\(287\) −0.790163 1.36860i −0.0466419 0.0807861i
\(288\) 0 0
\(289\) 7.32947 12.6950i 0.431145 0.746766i
\(290\) −24.9610 + 11.0032i −1.46576 + 0.646130i
\(291\) 0 0
\(292\) −2.57076 0.566285i −0.150442 0.0331394i
\(293\) 22.9900i 1.34309i −0.740963 0.671546i \(-0.765631\pi\)
0.740963 0.671546i \(-0.234369\pi\)
\(294\) 0 0
\(295\) 9.09217 15.7481i 0.529367 0.916890i
\(296\) 9.01575 26.7372i 0.524030 1.55407i
\(297\) 0 0
\(298\) −8.07576 + 11.0295i −0.467816 + 0.638924i
\(299\) −10.8186 18.7383i −0.625655 1.08367i
\(300\) 0 0
\(301\) 3.64306 + 6.30996i 0.209982 + 0.363700i
\(302\) 6.33380 + 14.3683i 0.364469 + 0.826805i
\(303\) 0 0
\(304\) −10.1161 14.2008i −0.580200 0.814474i
\(305\) 18.0213 1.03190
\(306\) 0 0
\(307\) −10.3144 17.8650i −0.588673 1.01961i −0.994407 0.105620i \(-0.966317\pi\)
0.405734 0.913991i \(-0.367016\pi\)
\(308\) 3.56131 3.89703i 0.202924 0.222054i
\(309\) 0 0
\(310\) 20.8685 28.5013i 1.18525 1.61876i
\(311\) 3.16368i 0.179396i 0.995969 + 0.0896978i \(0.0285901\pi\)
−0.995969 + 0.0896978i \(0.971410\pi\)
\(312\) 0 0
\(313\) −7.67203 + 13.2883i −0.433649 + 0.751101i −0.997184 0.0749904i \(-0.976107\pi\)
0.563536 + 0.826092i \(0.309441\pi\)
\(314\) 9.45722 12.9163i 0.533702 0.728908i
\(315\) 0 0
\(316\) −14.7345 3.24572i −0.828882 0.182586i
\(317\) 2.28007 + 1.31640i 0.128061 + 0.0739362i 0.562662 0.826687i \(-0.309777\pi\)
−0.434601 + 0.900623i \(0.643111\pi\)
\(318\) 0 0
\(319\) −6.34889 + 10.9966i −0.355470 + 0.615692i
\(320\) −3.24545 + 25.4471i −0.181426 + 1.42254i
\(321\) 0 0
\(322\) 15.4674 + 1.68340i 0.861965 + 0.0938121i
\(323\) −5.79377 3.30337i −0.322374 0.183804i
\(324\) 0 0
\(325\) −11.2509 + 6.49569i −0.624086 + 0.360316i
\(326\) −20.2881 + 8.94332i −1.12365 + 0.495324i
\(327\) 0 0
\(328\) 3.50451 0.704466i 0.193504 0.0388977i
\(329\) −4.42486 + 7.66408i −0.243950 + 0.422534i
\(330\) 0 0
\(331\) −9.30930 −0.511685 −0.255843 0.966718i \(-0.582353\pi\)
−0.255843 + 0.966718i \(0.582353\pi\)
\(332\) −11.5772 10.5799i −0.635382 0.580645i
\(333\) 0 0
\(334\) −5.07403 0.552233i −0.277639 0.0302168i
\(335\) 0.151248 0.00826358
\(336\) 0 0
\(337\) −3.28961 + 1.89926i −0.179196 + 0.103459i −0.586915 0.809648i \(-0.699658\pi\)
0.407719 + 0.913108i \(0.366324\pi\)
\(338\) 5.80822 7.93263i 0.315926 0.431478i
\(339\) 0 0
\(340\) 2.96336 + 9.35455i 0.160711 + 0.507321i
\(341\) 16.4430i 0.890439i
\(342\) 0 0
\(343\) 15.5510i 0.839674i
\(344\) −16.1576 + 3.24795i −0.871158 + 0.175118i
\(345\) 0 0
\(346\) 5.88830 + 4.31137i 0.316557 + 0.231781i
\(347\) −3.07657 + 1.77626i −0.165159 + 0.0953546i −0.580301 0.814402i \(-0.697065\pi\)
0.415142 + 0.909757i \(0.363732\pi\)
\(348\) 0 0
\(349\) −1.91850 −0.102695 −0.0513475 0.998681i \(-0.516352\pi\)
−0.0513475 + 0.998681i \(0.516352\pi\)
\(350\) 1.01074 9.28693i 0.0540266 0.496407i
\(351\) 0 0
\(352\) 5.77887 + 10.4498i 0.308015 + 0.556974i
\(353\) 7.11843 0.378876 0.189438 0.981893i \(-0.439333\pi\)
0.189438 + 0.981893i \(0.439333\pi\)
\(354\) 0 0
\(355\) 10.0238 17.3618i 0.532010 0.921469i
\(356\) −13.2636 + 4.20167i −0.702968 + 0.222688i
\(357\) 0 0
\(358\) 1.57566 + 3.57441i 0.0832760 + 0.188913i
\(359\) −7.25210 + 4.18700i −0.382751 + 0.220982i −0.679015 0.734125i \(-0.737593\pi\)
0.296263 + 0.955106i \(0.404259\pi\)
\(360\) 0 0
\(361\) 9.32139 16.5563i 0.490600 0.871385i
\(362\) −0.367273 + 3.37458i −0.0193034 + 0.177364i
\(363\) 0 0
\(364\) −1.85735 5.86315i −0.0973514 0.307313i
\(365\) −2.11029 + 3.65513i −0.110458 + 0.191318i
\(366\) 0 0
\(367\) 19.7381 + 11.3958i 1.03032 + 0.594857i 0.917077 0.398710i \(-0.130542\pi\)
0.113246 + 0.993567i \(0.463875\pi\)
\(368\) −14.7871 + 31.9357i −0.770830 + 1.66477i
\(369\) 0 0
\(370\) −36.5016 26.7263i −1.89763 1.38943i
\(371\) 4.46874 7.74008i 0.232005 0.401845i
\(372\) 0 0
\(373\) 23.5670i 1.22025i −0.792305 0.610125i \(-0.791119\pi\)
0.792305 0.610125i \(-0.208881\pi\)
\(374\) 3.68539 + 2.69842i 0.190567 + 0.139532i
\(375\) 0 0
\(376\) −13.2289 15.0233i −0.682230 0.774766i
\(377\) 7.39654 + 12.8112i 0.380941 + 0.659809i
\(378\) 0 0
\(379\) −38.1884 −1.96161 −0.980804 0.194995i \(-0.937531\pi\)
−0.980804 + 0.194995i \(0.937531\pi\)
\(380\) −26.6037 + 8.58625i −1.36474 + 0.440465i
\(381\) 0 0
\(382\) −5.67478 + 2.50153i −0.290347 + 0.127990i
\(383\) 10.8906 + 18.8631i 0.556483 + 0.963857i 0.997786 + 0.0664990i \(0.0211829\pi\)
−0.441303 + 0.897358i \(0.645484\pi\)
\(384\) 0 0
\(385\) −4.23213 7.33026i −0.215689 0.373585i
\(386\) −10.2310 7.49104i −0.520742 0.381284i
\(387\) 0 0
\(388\) −4.23244 + 19.2140i −0.214870 + 0.975441i
\(389\) 13.4725 23.3351i 0.683084 1.18314i −0.290950 0.956738i \(-0.593971\pi\)
0.974035 0.226399i \(-0.0726952\pi\)
\(390\) 0 0
\(391\) 13.4618i 0.680792i
\(392\) −14.5704 4.91312i −0.735917 0.248150i
\(393\) 0 0
\(394\) −0.794162 1.80157i −0.0400093 0.0907619i
\(395\) −12.0953 + 20.9497i −0.608582 + 1.05410i
\(396\) 0 0
\(397\) 2.35770 + 4.08365i 0.118329 + 0.204953i 0.919106 0.394011i \(-0.128913\pi\)
−0.800776 + 0.598964i \(0.795579\pi\)
\(398\) −0.0427497 + 0.392794i −0.00214285 + 0.0196890i
\(399\) 0 0
\(400\) 19.1748 + 8.87846i 0.958742 + 0.443923i
\(401\) −4.16941 + 2.40721i −0.208210 + 0.120210i −0.600479 0.799640i \(-0.705024\pi\)
0.392269 + 0.919850i \(0.371690\pi\)
\(402\) 0 0
\(403\) −16.5899 9.57816i −0.826400 0.477122i
\(404\) 3.78503 + 11.9483i 0.188312 + 0.594452i
\(405\) 0 0
\(406\) −10.5749 1.15092i −0.524822 0.0571191i
\(407\) −21.0586 −1.04384
\(408\) 0 0
\(409\) 12.2147 + 7.05216i 0.603978 + 0.348707i 0.770605 0.637313i \(-0.219954\pi\)
−0.166627 + 0.986020i \(0.553288\pi\)
\(410\) 0.620103 5.69763i 0.0306247 0.281386i
\(411\) 0 0
\(412\) 0.710568 0.777552i 0.0350071 0.0383072i
\(413\) 6.14100 3.54551i 0.302179 0.174463i
\(414\) 0 0
\(415\) −21.7766 + 12.5727i −1.06897 + 0.617171i
\(416\) 13.9093 + 0.256566i 0.681959 + 0.0125792i
\(417\) 0 0
\(418\) −7.63050 + 10.5406i −0.373220 + 0.515558i
\(419\) 31.5299i 1.54034i −0.637840 0.770169i \(-0.720172\pi\)
0.637840 0.770169i \(-0.279828\pi\)
\(420\) 0 0
\(421\) 23.2374 13.4161i 1.13252 0.653862i 0.187954 0.982178i \(-0.439814\pi\)
0.944568 + 0.328316i \(0.106481\pi\)
\(422\) 0.139107 0.189987i 0.00677163 0.00924841i
\(423\) 0 0
\(424\) 13.3601 + 15.1722i 0.648825 + 0.736829i
\(425\) 8.08272 0.392069
\(426\) 0 0
\(427\) 6.08594 + 3.51372i 0.294519 + 0.170041i
\(428\) −9.33051 + 10.2101i −0.451007 + 0.493523i
\(429\) 0 0
\(430\) −2.85899 + 26.2690i −0.137873 + 1.26680i
\(431\) 3.89128 6.73989i 0.187436 0.324649i −0.756958 0.653463i \(-0.773316\pi\)
0.944395 + 0.328814i \(0.106649\pi\)
\(432\) 0 0
\(433\) −13.2846 7.66988i −0.638418 0.368591i 0.145587 0.989345i \(-0.453493\pi\)
−0.784005 + 0.620755i \(0.786826\pi\)
\(434\) 12.6045 5.55627i 0.605036 0.266709i
\(435\) 0 0
\(436\) 5.21156 23.6589i 0.249589 1.13305i
\(437\) −38.3501 + 0.207494i −1.83454 + 0.00992577i
\(438\) 0 0
\(439\) −12.6149 21.8497i −0.602077 1.04283i −0.992506 0.122195i \(-0.961007\pi\)
0.390429 0.920633i \(-0.372327\pi\)
\(440\) 18.7702 3.77313i 0.894835 0.179877i
\(441\) 0 0
\(442\) 4.86928 2.14646i 0.231608 0.102097i
\(443\) 2.05095 + 1.18412i 0.0974435 + 0.0562590i 0.547930 0.836524i \(-0.315416\pi\)
−0.450486 + 0.892783i \(0.648749\pi\)
\(444\) 0 0
\(445\) 22.3074i 1.05747i
\(446\) 9.80134 13.3863i 0.464107 0.633858i
\(447\) 0 0
\(448\) −6.05758 + 7.96091i −0.286194 + 0.376118i
\(449\) 11.6774i 0.551093i 0.961288 + 0.275546i \(0.0888587\pi\)
−0.961288 + 0.275546i \(0.911141\pi\)
\(450\) 0 0
\(451\) −1.33391 2.31041i −0.0628115 0.108793i
\(452\) −7.31432 6.68421i −0.344037 0.314399i
\(453\) 0 0
\(454\) 5.00999 + 11.3653i 0.235131 + 0.533399i
\(455\) −9.86096 −0.462289
\(456\) 0 0
\(457\) −8.71735 −0.407781 −0.203890 0.978994i \(-0.565359\pi\)
−0.203890 + 0.978994i \(0.565359\pi\)
\(458\) −3.72700 8.45477i −0.174151 0.395066i
\(459\) 0 0
\(460\) 41.6530 + 38.0647i 1.94208 + 1.77477i
\(461\) 10.5590 + 18.2887i 0.491781 + 0.851789i 0.999955 0.00946495i \(-0.00301283\pi\)
−0.508174 + 0.861254i \(0.669679\pi\)
\(462\) 0 0
\(463\) 0.355651i 0.0165285i 0.999966 + 0.00826426i \(0.00263062\pi\)
−0.999966 + 0.00826426i \(0.997369\pi\)
\(464\) 10.1098 21.8341i 0.469334 1.01362i
\(465\) 0 0
\(466\) 21.9419 29.9674i 1.01644 1.38821i
\(467\) 4.47951i 0.207287i −0.994615 0.103643i \(-0.966950\pi\)
0.994615 0.103643i \(-0.0330501\pi\)
\(468\) 0 0
\(469\) 0.0510778 + 0.0294898i 0.00235855 + 0.00136171i
\(470\) −29.3679 + 12.9459i −1.35464 + 0.597148i
\(471\) 0 0
\(472\) 3.16098 + 15.7249i 0.145496 + 0.723798i
\(473\) 6.15002 + 10.6521i 0.282778 + 0.489786i
\(474\) 0 0
\(475\) 0.124583 + 23.0262i 0.00571627 + 1.05651i
\(476\) −0.823159 + 3.73689i −0.0377295 + 0.171280i
\(477\) 0 0
\(478\) −30.5016 + 13.4456i −1.39511 + 0.614987i
\(479\) 21.4965 + 12.4110i 0.982199 + 0.567073i 0.902933 0.429781i \(-0.141409\pi\)
0.0792655 + 0.996854i \(0.474743\pi\)
\(480\) 0 0
\(481\) −12.2668 + 21.2466i −0.559316 + 0.968764i
\(482\) 2.39657 22.0202i 0.109161 1.00299i
\(483\) 0 0
\(484\) −8.82907 + 9.66138i −0.401321 + 0.439154i
\(485\) 27.3186 + 15.7724i 1.24048 + 0.716189i
\(486\) 0 0
\(487\) 36.2102 1.64084 0.820420 0.571761i \(-0.193739\pi\)
0.820420 + 0.571761i \(0.193739\pi\)
\(488\) −11.9298 + 10.5049i −0.540035 + 0.475535i
\(489\) 0 0
\(490\) −14.5644 + 19.8915i −0.657955 + 0.898607i
\(491\) 5.16077 2.97957i 0.232902 0.134466i −0.379008 0.925393i \(-0.623735\pi\)
0.611910 + 0.790927i \(0.290401\pi\)
\(492\) 0 0
\(493\) 9.20366i 0.414512i
\(494\) 6.18992 + 13.8386i 0.278497 + 0.622628i
\(495\) 0 0
\(496\) 2.79934 + 31.0319i 0.125694 + 1.39337i
\(497\) 6.77026 3.90881i 0.303688 0.175334i
\(498\) 0 0
\(499\) 20.1581 11.6383i 0.902402 0.521002i 0.0244234 0.999702i \(-0.492225\pi\)
0.877979 + 0.478700i \(0.158892\pi\)
\(500\) 1.22284 1.33811i 0.0546869 0.0598422i
\(501\) 0 0
\(502\) 3.91486 35.9706i 0.174729 1.60545i
\(503\) 16.4493 + 9.49702i 0.733439 + 0.423451i 0.819679 0.572823i \(-0.194152\pi\)
−0.0862401 + 0.996274i \(0.527485\pi\)
\(504\) 0 0
\(505\) 20.0953 0.894231
\(506\) 26.1113 + 2.84183i 1.16079 + 0.126335i
\(507\) 0 0
\(508\) −3.45795 10.9158i −0.153422 0.484312i
\(509\) −11.3577 6.55740i −0.503423 0.290652i 0.226703 0.973964i \(-0.427205\pi\)
−0.730126 + 0.683312i \(0.760539\pi\)
\(510\) 0 0
\(511\) −1.42532 + 0.822911i −0.0630526 + 0.0364035i
\(512\) −12.6851 18.7373i −0.560608 0.828081i
\(513\) 0 0
\(514\) 3.08207 28.3187i 0.135944 1.24908i
\(515\) −0.844413 1.46257i −0.0372093 0.0644483i
\(516\) 0 0
\(517\) −7.46982 + 12.9381i −0.328522 + 0.569017i
\(518\) −7.11592 16.1426i −0.312655 0.709265i
\(519\) 0 0
\(520\) 7.12693 21.1357i 0.312537 0.926862i
\(521\) 24.9294i 1.09218i 0.837727 + 0.546089i \(0.183884\pi\)
−0.837727 + 0.546089i \(0.816116\pi\)
\(522\) 0 0
\(523\) −15.1705 + 26.2761i −0.663359 + 1.14897i 0.316368 + 0.948636i \(0.397536\pi\)
−0.979727 + 0.200335i \(0.935797\pi\)
\(524\) −8.03276 + 36.4662i −0.350913 + 1.59303i
\(525\) 0 0
\(526\) −4.14808 3.03720i −0.180865 0.132428i
\(527\) 5.95915 + 10.3215i 0.259584 + 0.449613i
\(528\) 0 0
\(529\) 27.2047 + 47.1198i 1.18281 + 2.04869i
\(530\) 29.6592 13.0742i 1.28831 0.567909i
\(531\) 0 0
\(532\) −10.6584 2.28743i −0.462100 0.0991727i
\(533\) −3.10805 −0.134625
\(534\) 0 0
\(535\) 11.0880 + 19.2051i 0.479378 + 0.830307i
\(536\) −0.100124 + 0.0881651i −0.00432468 + 0.00380815i
\(537\) 0 0
\(538\) −20.9749 15.3577i −0.904292 0.662117i
\(539\) 11.4759i 0.494300i
\(540\) 0 0
\(541\) 12.1933 21.1195i 0.524233 0.907998i −0.475369 0.879787i \(-0.657685\pi\)
0.999602 0.0282117i \(-0.00898124\pi\)
\(542\) 22.0435 + 16.1401i 0.946848 + 0.693276i
\(543\) 0 0
\(544\) −7.41460 4.46514i −0.317898 0.191441i
\(545\) −33.6384 19.4212i −1.44091 0.831911i
\(546\) 0 0
\(547\) 18.7226 32.4286i 0.800522 1.38655i −0.118751 0.992924i \(-0.537889\pi\)
0.919273 0.393621i \(-0.128778\pi\)
\(548\) 12.0389 + 38.0036i 0.514276 + 1.62343i
\(549\) 0 0
\(550\) 1.70629 15.6777i 0.0727564 0.668500i
\(551\) 26.2195 0.141861i 1.11699 0.00604348i
\(552\) 0 0
\(553\) −8.16937 + 4.71659i −0.347397 + 0.200570i
\(554\) −9.44545 21.4272i −0.401299 0.910354i
\(555\) 0 0
\(556\) −19.9025 + 6.30478i −0.844056 + 0.267382i
\(557\) 7.69507 13.3283i 0.326051 0.564736i −0.655674 0.755044i \(-0.727615\pi\)
0.981724 + 0.190308i \(0.0609487\pi\)
\(558\) 0 0
\(559\) 14.3297 0.606082
\(560\) 9.23497 + 13.1134i 0.390249 + 0.554144i
\(561\) 0 0
\(562\) 0.610426 5.60872i 0.0257493 0.236590i
\(563\) −25.2567 −1.06444 −0.532222 0.846605i \(-0.678643\pi\)
−0.532222 + 0.846605i \(0.678643\pi\)
\(564\) 0 0
\(565\) −13.7582 + 7.94327i −0.578810 + 0.334176i
\(566\) −16.9251 12.3924i −0.711413 0.520892i
\(567\) 0 0
\(568\) 3.48488 + 17.3362i 0.146222 + 0.727412i
\(569\) 46.3413i 1.94273i −0.237599 0.971363i \(-0.576361\pi\)
0.237599 0.971363i \(-0.423639\pi\)
\(570\) 0 0
\(571\) 32.1609i 1.34589i −0.739692 0.672946i \(-0.765029\pi\)
0.739692 0.672946i \(-0.234971\pi\)
\(572\) −3.13548 9.89787i −0.131101 0.413851i
\(573\) 0 0
\(574\) 1.32031 1.80323i 0.0551088 0.0752654i
\(575\) 40.2512 23.2390i 1.67859 0.969135i
\(576\) 0 0
\(577\) −39.2983 −1.63601 −0.818004 0.575212i \(-0.804919\pi\)
−0.818004 + 0.575212i \(0.804919\pi\)
\(578\) 20.6092 + 2.24300i 0.857229 + 0.0932966i
\(579\) 0 0
\(580\) −28.4776 26.0244i −1.18247 1.08060i
\(581\) −9.80550 −0.406801
\(582\) 0 0
\(583\) 7.54389 13.0664i 0.312436 0.541155i
\(584\) −0.733663 3.64975i −0.0303592 0.151028i
\(585\) 0 0
\(586\) 29.7505 13.1145i 1.22898 0.541755i
\(587\) −15.4560 + 8.92352i −0.637937 + 0.368313i −0.783819 0.620989i \(-0.786731\pi\)
0.145883 + 0.989302i \(0.453398\pi\)
\(588\) 0 0
\(589\) −29.3123 + 17.1356i −1.20779 + 0.706060i
\(590\) 25.5656 + 2.78243i 1.05252 + 0.114551i
\(591\) 0 0
\(592\) 39.7426 3.58511i 1.63341 0.147347i
\(593\) −11.7249 + 20.3082i −0.481485 + 0.833957i −0.999774 0.0212488i \(-0.993236\pi\)
0.518289 + 0.855205i \(0.326569\pi\)
\(594\) 0 0
\(595\) 5.31315 + 3.06755i 0.217818 + 0.125757i
\(596\) −18.8797 4.15880i −0.773341 0.170351i
\(597\) 0 0
\(598\) 18.0772 24.6891i 0.739231 1.00961i
\(599\) 7.40584 12.8273i 0.302595 0.524109i −0.674128 0.738614i \(-0.735481\pi\)
0.976723 + 0.214505i \(0.0688138\pi\)
\(600\) 0 0
\(601\) 4.30046i 0.175419i 0.996146 + 0.0877097i \(0.0279548\pi\)
−0.996146 + 0.0877097i \(0.972045\pi\)
\(602\) −6.08732 + 8.31381i −0.248101 + 0.338846i
\(603\) 0 0
\(604\) −14.9805 + 16.3926i −0.609546 + 0.667007i
\(605\) 10.4921 + 18.1729i 0.426566 + 0.738835i
\(606\) 0 0
\(607\) −20.1844 −0.819260 −0.409630 0.912252i \(-0.634342\pi\)
−0.409630 + 0.912252i \(0.634342\pi\)
\(608\) 12.6061 21.1917i 0.511244 0.859435i
\(609\) 0 0
\(610\) 10.2801 + 23.3207i 0.416230 + 0.944227i
\(611\) 8.70243 + 15.0730i 0.352062 + 0.609790i
\(612\) 0 0
\(613\) 0.467103 + 0.809046i 0.0188661 + 0.0326771i 0.875304 0.483572i \(-0.160661\pi\)
−0.856438 + 0.516250i \(0.827328\pi\)
\(614\) 17.2347 23.5384i 0.695535 0.949933i
\(615\) 0 0
\(616\) 7.07452 + 2.38552i 0.285040 + 0.0961153i
\(617\) 4.11324 7.12434i 0.165593 0.286815i −0.771273 0.636505i \(-0.780380\pi\)
0.936866 + 0.349690i \(0.113713\pi\)
\(618\) 0 0
\(619\) 7.04730i 0.283255i 0.989920 + 0.141627i \(0.0452335\pi\)
−0.989920 + 0.141627i \(0.954766\pi\)
\(620\) 48.7867 + 10.7467i 1.95932 + 0.431598i
\(621\) 0 0
\(622\) −4.09399 + 1.80470i −0.164154 + 0.0723618i
\(623\) −4.34940 + 7.53338i −0.174255 + 0.301819i
\(624\) 0 0
\(625\) 11.7534 + 20.3576i 0.470138 + 0.814302i
\(626\) −21.5724 2.34783i −0.862206 0.0938383i
\(627\) 0 0
\(628\) 22.1093 + 4.87022i 0.882256 + 0.194343i
\(629\) 13.2188 7.63188i 0.527068 0.304303i
\(630\) 0 0
\(631\) −17.5204 10.1154i −0.697476 0.402688i 0.108931 0.994049i \(-0.465257\pi\)
−0.806407 + 0.591362i \(0.798591\pi\)
\(632\) −4.20505 20.9189i −0.167268 0.832108i
\(633\) 0 0
\(634\) −0.402851 + 3.70148i −0.0159992 + 0.147004i
\(635\) −18.3589 −0.728549
\(636\) 0 0
\(637\) 11.5783 + 6.68475i 0.458750 + 0.264860i
\(638\) −17.8520 1.94292i −0.706766 0.0769210i
\(639\) 0 0
\(640\) −34.7815 + 10.3163i −1.37486 + 0.407789i
\(641\) 6.91570 3.99278i 0.273154 0.157705i −0.357166 0.934041i \(-0.616257\pi\)
0.630320 + 0.776335i \(0.282924\pi\)
\(642\) 0 0
\(643\) 9.89926 5.71534i 0.390389 0.225391i −0.291940 0.956437i \(-0.594301\pi\)
0.682328 + 0.731046i \(0.260967\pi\)
\(644\) 6.64485 + 20.9761i 0.261844 + 0.826572i
\(645\) 0 0
\(646\) 0.969747 9.38188i 0.0381542 0.369125i
\(647\) 48.3776i 1.90192i −0.309312 0.950961i \(-0.600099\pi\)
0.309312 0.950961i \(-0.399901\pi\)
\(648\) 0 0
\(649\) 10.3669 5.98534i 0.406937 0.234945i
\(650\) −14.8238 10.8539i −0.581438 0.425725i
\(651\) 0 0
\(652\) −23.1464 21.1524i −0.906483 0.828391i
\(653\) −32.2260 −1.26110 −0.630551 0.776148i \(-0.717171\pi\)
−0.630551 + 0.776148i \(0.717171\pi\)
\(654\) 0 0
\(655\) 51.8481 + 29.9345i 2.02587 + 1.16964i
\(656\) 2.91075 + 4.13319i 0.113646 + 0.161374i
\(657\) 0 0
\(658\) −12.4419 1.35412i −0.485036 0.0527890i
\(659\) 13.5111 23.4019i 0.526317 0.911608i −0.473213 0.880948i \(-0.656906\pi\)
0.999530 0.0306595i \(-0.00976076\pi\)
\(660\) 0 0
\(661\) 23.1686 + 13.3764i 0.901155 + 0.520282i 0.877575 0.479440i \(-0.159160\pi\)
0.0235802 + 0.999722i \(0.492493\pi\)
\(662\) −5.31042 12.0468i −0.206396 0.468212i
\(663\) 0 0
\(664\) 7.08685 21.0168i 0.275023 0.815611i
\(665\) −8.65699 + 15.1835i −0.335703 + 0.588790i
\(666\) 0 0
\(667\) −26.4619 45.8334i −1.02461 1.77467i
\(668\) −2.17982 6.88113i −0.0843398 0.266239i
\(669\) 0 0
\(670\) 0.0862786 + 0.195725i 0.00333323 + 0.00756150i
\(671\) 10.2740 + 5.93168i 0.396622 + 0.228990i
\(672\) 0 0
\(673\) 29.5414i 1.13874i −0.822083 0.569368i \(-0.807188\pi\)
0.822083 0.569368i \(-0.192812\pi\)
\(674\) −4.33429 3.17354i −0.166951 0.122240i
\(675\) 0 0
\(676\) 13.5786 + 2.99108i 0.522253 + 0.115042i
\(677\) 15.6682i 0.602176i 0.953596 + 0.301088i \(0.0973498\pi\)
−0.953596 + 0.301088i \(0.902650\pi\)
\(678\) 0 0
\(679\) 6.15048 + 10.6529i 0.236034 + 0.408822i
\(680\) −10.4149 + 9.17100i −0.399394 + 0.351692i
\(681\) 0 0
\(682\) 21.2783 9.37980i 0.814787 0.359171i
\(683\) −29.7127 −1.13693 −0.568463 0.822709i \(-0.692462\pi\)
−0.568463 + 0.822709i \(0.692462\pi\)
\(684\) 0 0
\(685\) 63.9165 2.44212
\(686\) −20.1239 + 8.87094i −0.768335 + 0.338694i
\(687\) 0 0
\(688\) −13.4200 19.0561i −0.511634 0.726508i
\(689\) −8.78872 15.2225i −0.334824 0.579932i
\(690\) 0 0
\(691\) 32.8555i 1.24988i 0.780671 + 0.624942i \(0.214877\pi\)
−0.780671 + 0.624942i \(0.785123\pi\)
\(692\) −2.22024 + 10.0792i −0.0844010 + 0.383154i
\(693\) 0 0
\(694\) −4.05360 2.96802i −0.153872 0.112664i
\(695\) 33.4732i 1.26971i
\(696\) 0 0
\(697\) 1.67464 + 0.966852i 0.0634314 + 0.0366221i
\(698\) −1.09440 2.48266i −0.0414235 0.0939701i
\(699\) 0 0
\(700\) 12.5944 3.98970i 0.476025 0.150796i
\(701\) 8.96916 + 15.5350i 0.338761 + 0.586751i 0.984200 0.177061i \(-0.0566590\pi\)
−0.645439 + 0.763812i \(0.723326\pi\)
\(702\) 0 0
\(703\) 21.9456 + 37.5403i 0.827693 + 1.41586i
\(704\) −10.2261 + 13.4392i −0.385411 + 0.506509i
\(705\) 0 0
\(706\) 4.06066 + 9.21169i 0.152825 + 0.346686i
\(707\) 6.78635 + 3.91810i 0.255227 + 0.147355i
\(708\) 0 0
\(709\) 3.51145 6.08201i 0.131875 0.228415i −0.792524 0.609841i \(-0.791233\pi\)
0.924399 + 0.381426i \(0.124567\pi\)
\(710\) 28.1853 + 3.06755i 1.05777 + 0.115123i
\(711\) 0 0
\(712\) −13.0033 14.7671i −0.487321 0.553419i
\(713\) 59.3520 + 34.2669i 2.22275 + 1.28330i
\(714\) 0 0
\(715\) −16.6468 −0.622554
\(716\) −3.72668 + 4.07799i −0.139273 + 0.152402i
\(717\) 0 0
\(718\) −9.55515 6.99622i −0.356595 0.261097i
\(719\) 23.4325 13.5288i 0.873886 0.504538i 0.00524853 0.999986i \(-0.498329\pi\)
0.868638 + 0.495448i \(0.164996\pi\)
\(720\) 0 0
\(721\) 0.658560i 0.0245260i
\(722\) 26.7422 + 2.61802i 0.995242 + 0.0974327i
\(723\) 0 0
\(724\) −4.57642 + 1.44973i −0.170081 + 0.0538788i
\(725\) −27.5193 + 15.8882i −1.02204 + 0.590075i
\(726\) 0 0
\(727\) −23.9684 + 13.8381i −0.888938 + 0.513229i −0.873595 0.486654i \(-0.838217\pi\)
−0.0153429 + 0.999882i \(0.504884\pi\)
\(728\) 6.52777 5.74811i 0.241935 0.213039i
\(729\) 0 0
\(730\) −5.93377 0.645803i −0.219619 0.0239022i
\(731\) −7.72093 4.45768i −0.285569 0.164873i
\(732\) 0 0
\(733\) −2.82689 −0.104414 −0.0522068 0.998636i \(-0.516626\pi\)
−0.0522068 + 0.998636i \(0.516626\pi\)
\(734\) −3.48741 + 32.0430i −0.128723 + 1.18273i
\(735\) 0 0
\(736\) −49.7620 0.917891i −1.83425 0.0338339i
\(737\) 0.0862268 + 0.0497831i 0.00317621 + 0.00183378i
\(738\) 0 0
\(739\) 21.3233 12.3110i 0.784392 0.452869i −0.0535927 0.998563i \(-0.517067\pi\)
0.837984 + 0.545694i \(0.183734\pi\)
\(740\) 13.7633 62.4812i 0.505950 2.29685i
\(741\) 0 0
\(742\) 12.5653 + 1.36755i 0.461286 + 0.0502042i
\(743\) 3.96328 + 6.86460i 0.145399 + 0.251838i 0.929522 0.368768i \(-0.120220\pi\)
−0.784123 + 0.620605i \(0.786887\pi\)
\(744\) 0 0
\(745\) −15.4980 + 26.8433i −0.567803 + 0.983463i
\(746\) 30.4971 13.4436i 1.11658 0.492205i
\(747\) 0 0
\(748\) −1.38962 + 6.30842i −0.0508094 + 0.230659i
\(749\) 8.64759i 0.315976i
\(750\) 0 0
\(751\) −7.13985 + 12.3666i −0.260537 + 0.451263i −0.966385 0.257101i \(-0.917233\pi\)
0.705848 + 0.708363i \(0.250566\pi\)
\(752\) 11.8947 25.6890i 0.433754 0.936780i
\(753\) 0 0
\(754\) −12.3592 + 16.8796i −0.450094 + 0.614720i
\(755\) 17.8022 + 30.8344i 0.647889 + 1.12218i
\(756\) 0 0
\(757\) −17.1966 29.7854i −0.625021 1.08257i −0.988537 0.150981i \(-0.951757\pi\)
0.363515 0.931588i \(-0.381576\pi\)
\(758\) −21.7843 49.4182i −0.791242 1.79495i
\(759\) 0 0
\(760\) −26.2870 29.5289i −0.953531 1.07112i
\(761\) 31.6267 1.14647 0.573233 0.819392i \(-0.305689\pi\)
0.573233 + 0.819392i \(0.305689\pi\)
\(762\) 0 0
\(763\) −7.57331 13.1174i −0.274172 0.474880i
\(764\) −6.47428 5.91653i −0.234231 0.214053i
\(765\) 0 0
\(766\) −18.1975 + 24.8534i −0.657502 + 0.897989i
\(767\) 13.9460i 0.503561i
\(768\) 0 0
\(769\) 11.7685 20.3836i 0.424383 0.735052i −0.571980 0.820268i \(-0.693824\pi\)
0.996363 + 0.0852153i \(0.0271578\pi\)
\(770\) 7.07162 9.65813i 0.254844 0.348055i
\(771\) 0 0
\(772\) 3.85769 17.5127i 0.138841 0.630296i
\(773\) 10.5693 + 6.10219i 0.380152 + 0.219481i 0.677884 0.735169i \(-0.262897\pi\)
−0.297733 + 0.954649i \(0.596230\pi\)
\(774\) 0 0
\(775\) 20.5745 35.6361i 0.739058 1.28009i
\(776\) −27.2784 + 5.48343i −0.979238 + 0.196844i
\(777\) 0 0
\(778\) 37.8824 + 4.12293i 1.35815 + 0.147814i
\(779\) −2.72857 + 4.78564i −0.0977612 + 0.171463i
\(780\) 0 0
\(781\) 11.4292 6.59865i 0.408969 0.236118i
\(782\) −17.4204 + 7.67918i −0.622951 + 0.274607i
\(783\) 0 0
\(784\) −1.95370 21.6577i −0.0697751 0.773488i
\(785\) 18.1491 31.4352i 0.647770 1.12197i
\(786\) 0 0
\(787\) −36.6534 −1.30655 −0.653276 0.757120i \(-0.726606\pi\)
−0.653276 + 0.757120i \(0.726606\pi\)
\(788\) 1.87832 2.05539i 0.0669124 0.0732202i
\(789\) 0 0
\(790\) −34.0099 3.70148i −1.21002 0.131693i
\(791\) −6.19498 −0.220268
\(792\) 0 0
\(793\) 11.9693 6.91048i 0.425042 0.245398i
\(794\) −3.93956 + 5.38050i −0.139810 + 0.190947i
\(795\) 0 0
\(796\) −0.532685 + 0.168746i −0.0188805 + 0.00598103i
\(797\) 14.7351i 0.521944i 0.965346 + 0.260972i \(0.0840430\pi\)
−0.965346 + 0.260972i \(0.915957\pi\)
\(798\) 0 0
\(799\) 10.8286i 0.383088i
\(800\) −0.551120 + 29.8781i −0.0194850 + 1.05635i
\(801\) 0 0
\(802\) −5.49348 4.02229i −0.193982 0.142032i
\(803\) −2.40616 + 1.38920i −0.0849115 + 0.0490237i
\(804\) 0 0
\(805\) 35.2786 1.24341
\(806\) 2.93116 26.9321i 0.103246 0.948642i
\(807\) 0 0
\(808\) −13.3027 + 11.7139i −0.467989 + 0.412093i
\(809\) −14.1872 −0.498796 −0.249398 0.968401i \(-0.580233\pi\)
−0.249398 + 0.968401i \(0.580233\pi\)
\(810\) 0 0
\(811\) 21.0255 36.4173i 0.738307 1.27879i −0.214950 0.976625i \(-0.568959\pi\)
0.953257 0.302160i \(-0.0977077\pi\)
\(812\) −4.54301 14.3411i −0.159428 0.503273i
\(813\) 0 0
\(814\) −12.0127 27.2511i −0.421046 0.955151i
\(815\) −43.5381 + 25.1367i −1.52507 + 0.880501i
\(816\) 0 0
\(817\) 12.5801 22.0642i 0.440122 0.771929i
\(818\) −2.15814 + 19.8294i −0.0754576 + 0.693320i
\(819\) 0 0
\(820\) 7.72682 2.44772i 0.269832 0.0854782i
\(821\) 22.3593 38.7274i 0.780343 1.35159i −0.151398 0.988473i \(-0.548378\pi\)
0.931742 0.363122i \(-0.118289\pi\)
\(822\) 0 0
\(823\) −34.6560 20.0087i −1.20803 0.697458i −0.245703 0.969345i \(-0.579019\pi\)
−0.962329 + 0.271887i \(0.912352\pi\)
\(824\) 1.41154 + 0.475969i 0.0491733 + 0.0165812i
\(825\) 0 0
\(826\) 8.09119 + 5.92432i 0.281529 + 0.206133i
\(827\) −13.1881 + 22.8424i −0.458594 + 0.794309i −0.998887 0.0471684i \(-0.984980\pi\)
0.540293 + 0.841477i \(0.318314\pi\)
\(828\) 0 0
\(829\) 39.6736i 1.37792i 0.724798 + 0.688961i \(0.241933\pi\)
−0.724798 + 0.688961i \(0.758067\pi\)
\(830\) −28.6922 21.0082i −0.995920 0.729206i
\(831\) 0 0
\(832\) 7.60245 + 18.1458i 0.263567 + 0.629094i
\(833\) −4.15898 7.20357i −0.144100 0.249589i
\(834\) 0 0
\(835\) −11.5730 −0.400502
\(836\) −17.9929 3.86152i −0.622299 0.133554i
\(837\) 0 0
\(838\) 40.8017 17.9860i 1.40947 0.621317i
\(839\) 7.96193 + 13.7905i 0.274876 + 0.476100i 0.970104 0.242690i \(-0.0780298\pi\)
−0.695228 + 0.718790i \(0.744696\pi\)
\(840\) 0 0
\(841\) 3.59168 + 6.22098i 0.123851 + 0.214516i
\(842\) 30.6169 + 22.4175i 1.05513 + 0.772558i
\(843\) 0 0
\(844\) 0.325207 + 0.0716365i 0.0111941 + 0.00246583i
\(845\) 11.1464 19.3062i 0.383449 0.664152i
\(846\) 0 0
\(847\) 8.18285i 0.281166i
\(848\) −12.0126 + 25.9437i −0.412515 + 0.890910i
\(849\) 0 0
\(850\) 4.61073 + 10.4595i 0.158147 + 0.358759i
\(851\) 43.8856 76.0122i 1.50438 2.60566i
\(852\) 0 0
\(853\) 19.4390 + 33.6693i 0.665578 + 1.15281i 0.979128 + 0.203243i \(0.0651482\pi\)
−0.313550 + 0.949572i \(0.601518\pi\)
\(854\) −1.07529 + 9.87995i −0.0367955 + 0.338085i
\(855\) 0 0
\(856\) −18.5350 6.24998i −0.633513 0.213620i
\(857\) −28.7983 + 16.6267i −0.983730 + 0.567957i −0.903394 0.428811i \(-0.858933\pi\)
−0.0803358 + 0.996768i \(0.525599\pi\)
\(858\) 0 0
\(859\) 28.1710 + 16.2645i 0.961183 + 0.554939i 0.896537 0.442969i \(-0.146075\pi\)
0.0646461 + 0.997908i \(0.479408\pi\)
\(860\) −35.6246 + 11.2853i −1.21479 + 0.384824i
\(861\) 0 0
\(862\) 10.9416 + 1.19083i 0.372672 + 0.0405598i
\(863\) 20.4964 0.697707 0.348853 0.937177i \(-0.386571\pi\)
0.348853 + 0.937177i \(0.386571\pi\)
\(864\) 0 0
\(865\) 14.3307 + 8.27386i 0.487260 + 0.281320i
\(866\) 2.34718 21.5663i 0.0797603 0.732854i
\(867\) 0 0
\(868\) 14.3803 + 13.1415i 0.488099 + 0.446050i
\(869\) −13.7911 + 7.96231i −0.467832 + 0.270103i
\(870\) 0 0
\(871\) 0.100455 0.0579979i 0.00340380 0.00196518i
\(872\) 33.5889 6.75195i 1.13746 0.228650i
\(873\) 0 0
\(874\) −22.1451 49.5091i −0.749069 1.67467i
\(875\) 1.13333i 0.0383137i
\(876\) 0 0
\(877\) −29.2384 + 16.8808i −0.987312 + 0.570025i −0.904470 0.426538i \(-0.859733\pi\)
−0.0828424 + 0.996563i \(0.526400\pi\)
\(878\) 21.0787 28.7885i 0.711372 0.971563i
\(879\) 0 0
\(880\) 15.5900 + 22.1374i 0.525539 + 0.746253i
\(881\) 37.8371 1.27476 0.637382 0.770548i \(-0.280017\pi\)
0.637382 + 0.770548i \(0.280017\pi\)
\(882\) 0 0
\(883\) 23.2555 + 13.4265i 0.782609 + 0.451839i 0.837354 0.546661i \(-0.184101\pi\)
−0.0547454 + 0.998500i \(0.517435\pi\)
\(884\) 5.55529 + 5.07672i 0.186845 + 0.170748i
\(885\) 0 0
\(886\) −0.362369 + 3.32952i −0.0121740 + 0.111858i
\(887\) −4.11911 + 7.13451i −0.138306 + 0.239554i −0.926856 0.375418i \(-0.877499\pi\)
0.788549 + 0.614972i \(0.210832\pi\)
\(888\) 0 0
\(889\) −6.19993 3.57953i −0.207939 0.120054i
\(890\) −28.8671 + 12.7251i −0.967629 + 0.426546i
\(891\) 0 0
\(892\) 22.9138 + 5.04743i 0.767209 + 0.169000i
\(893\) 30.8487 0.166907i 1.03231 0.00558533i
\(894\) 0 0
\(895\) 4.42865 + 7.67065i 0.148033 + 0.256401i
\(896\) −13.7574 3.29764i −0.459603 0.110166i
\(897\) 0 0
\(898\) −15.1113 + 6.66132i −0.504272 + 0.222291i
\(899\) −40.5782 23.4279i −1.35336 0.781363i
\(900\) 0 0
\(901\) 10.9360i 0.364330i
\(902\) 2.22889 3.04412i 0.0742138 0.101358i
\(903\) 0 0
\(904\) 4.47737 13.2781i 0.148915 0.441624i
\(905\) 7.69687i 0.255853i
\(906\) 0 0
\(907\) 12.9847 + 22.4902i 0.431150 + 0.746774i 0.996973 0.0777533i \(-0.0247747\pi\)
−0.565823 + 0.824527i \(0.691441\pi\)
\(908\) −11.8494 + 12.9665i −0.393238 + 0.430308i
\(909\) 0 0
\(910\) −5.62512 12.7607i −0.186471 0.423013i
\(911\) −35.0480 −1.16119 −0.580597 0.814191i \(-0.697181\pi\)
−0.580597 + 0.814191i \(0.697181\pi\)
\(912\) 0 0
\(913\) −16.5531 −0.547829
\(914\) −4.97275 11.2808i −0.164484 0.373135i
\(915\) 0 0
\(916\) 8.81495 9.64593i 0.291254 0.318711i
\(917\) 11.6730 + 20.2182i 0.385477 + 0.667665i
\(918\) 0 0
\(919\) 6.29627i 0.207695i 0.994593 + 0.103847i \(0.0331153\pi\)
−0.994593 + 0.103847i \(0.966885\pi\)
\(920\) −25.4974 + 75.6152i −0.840623 + 2.49296i
\(921\) 0 0
\(922\) −17.6434 + 24.0966i −0.581054 + 0.793580i
\(923\) 15.3750i 0.506075i
\(924\) 0 0
\(925\) −45.6392 26.3498i −1.50061 0.866376i
\(926\) −0.460234 + 0.202879i −0.0151242 + 0.00666701i
\(927\) 0 0
\(928\) 34.0217 + 0.627551i 1.11682 + 0.0206004i
\(929\) 1.85864 + 3.21925i 0.0609799 + 0.105620i 0.894904 0.446259i \(-0.147244\pi\)
−0.833924 + 0.551880i \(0.813911\pi\)
\(930\) 0 0
\(931\) 20.4576 11.9592i 0.670469 0.391948i
\(932\) 51.2963 + 11.2995i 1.68027 + 0.370128i
\(933\) 0 0
\(934\) 5.79675 2.55530i 0.189676 0.0836120i
\(935\) 8.96938 + 5.17848i 0.293330 + 0.169354i
\(936\) 0 0
\(937\) −21.7674 + 37.7022i −0.711109 + 1.23168i 0.253332 + 0.967379i \(0.418473\pi\)
−0.964441 + 0.264298i \(0.914860\pi\)
\(938\) −0.00902461 + 0.0829200i −0.000294664 + 0.00270743i
\(939\) 0 0
\(940\) −33.5055 30.6191i −1.09283 0.998683i
\(941\) −34.9810 20.1963i −1.14035 0.658380i −0.193831 0.981035i \(-0.562091\pi\)
−0.946517 + 0.322655i \(0.895425\pi\)
\(942\) 0 0
\(943\) 11.1194 0.362097
\(944\) −18.5459 + 13.0607i −0.603616 + 0.425089i
\(945\) 0 0
\(946\) −10.2763 + 14.0349i −0.334111 + 0.456315i
\(947\) 21.1885 12.2332i 0.688533 0.397525i −0.114529 0.993420i \(-0.536536\pi\)
0.803062 + 0.595895i \(0.203203\pi\)
\(948\) 0 0
\(949\) 3.23686i 0.105073i
\(950\) −29.7262 + 13.2963i −0.964446 + 0.431390i
\(951\) 0 0
\(952\) −5.30533 + 1.06646i −0.171947 + 0.0345642i
\(953\) 43.7145 25.2386i 1.41605 0.817557i 0.420101 0.907477i \(-0.361994\pi\)
0.995949 + 0.0899200i \(0.0286611\pi\)
\(954\) 0 0
\(955\) −12.1780 + 7.03099i −0.394072 + 0.227518i
\(956\) −34.7988 31.8010i −1.12547 1.02852i
\(957\) 0 0
\(958\) −3.79808 + 34.8975i −0.122710 + 1.12749i
\(959\) 21.5851 + 12.4622i 0.697019 + 0.402424i
\(960\) 0 0
\(961\) 29.6759 0.957286
\(962\) −34.4920 3.75394i −1.11207 0.121032i
\(963\) 0 0
\(964\) 29.8626 9.45995i 0.961809 0.304684i
\(965\) −24.8998 14.3759i −0.801552 0.462776i
\(966\) 0 0
\(967\) −43.6786 + 25.2179i −1.40461 + 0.810952i −0.994861 0.101246i \(-0.967717\pi\)
−0.409749 + 0.912198i \(0.634384\pi\)
\(968\) −17.5389 5.91409i −0.563721 0.190086i
\(969\) 0 0
\(970\) −4.82676 + 44.3493i −0.154978 + 1.42397i
\(971\) −5.26456 9.11849i −0.168948 0.292626i 0.769102 0.639126i \(-0.220704\pi\)
−0.938050 + 0.346499i \(0.887370\pi\)
\(972\) 0 0
\(973\) −6.52645 + 11.3041i −0.209228 + 0.362394i
\(974\) 20.6559 + 46.8582i 0.661856 + 1.50143i
\(975\) 0 0
\(976\) −20.3993 9.44539i −0.652964 0.302340i
\(977\) 6.92660i 0.221602i −0.993843 0.110801i \(-0.964658\pi\)
0.993843 0.110801i \(-0.0353415\pi\)
\(978\) 0 0
\(979\) −7.34243 + 12.7175i −0.234665 + 0.406452i
\(980\) −34.0490 7.50031i −1.08766 0.239588i
\(981\) 0 0
\(982\) 6.79967 + 4.97868i 0.216986 + 0.158876i
\(983\) 17.5996 + 30.4835i 0.561341 + 0.972272i 0.997380 + 0.0723437i \(0.0230479\pi\)
−0.436038 + 0.899928i \(0.643619\pi\)
\(984\) 0 0
\(985\) −2.23213 3.86616i −0.0711215 0.123186i
\(986\) 11.9101 5.25016i 0.379295 0.167199i
\(987\) 0 0
\(988\) −14.3770 + 15.9043i −0.457394 + 0.505982i
\(989\) −51.2660 −1.63016
\(990\) 0 0
\(991\) −24.9524 43.2188i −0.792638 1.37289i −0.924328 0.381599i \(-0.875374\pi\)
0.131690 0.991291i \(-0.457960\pi\)
\(992\) −38.5603 + 21.3244i −1.22429 + 0.677051i
\(993\) 0 0
\(994\) 8.92028 + 6.53137i 0.282934 + 0.207163i
\(995\) 0.895899i 0.0284019i
\(996\) 0 0
\(997\) −2.63314 + 4.56074i −0.0833925 + 0.144440i −0.904705 0.426038i \(-0.859909\pi\)
0.821313 + 0.570478i \(0.193242\pi\)
\(998\) 26.5598 + 19.4469i 0.840734 + 0.615580i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.r.a.487.5 16
3.2 odd 2 76.2.f.a.31.4 yes 16
4.3 odd 2 inner 684.2.r.a.487.2 16
12.11 even 2 76.2.f.a.31.7 yes 16
19.8 odd 6 inner 684.2.r.a.559.2 16
24.5 odd 2 1216.2.n.f.639.6 16
24.11 even 2 1216.2.n.f.639.3 16
57.8 even 6 76.2.f.a.27.7 yes 16
76.27 even 6 inner 684.2.r.a.559.5 16
228.179 odd 6 76.2.f.a.27.4 16
456.179 odd 6 1216.2.n.f.255.6 16
456.293 even 6 1216.2.n.f.255.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
76.2.f.a.27.4 16 228.179 odd 6
76.2.f.a.27.7 yes 16 57.8 even 6
76.2.f.a.31.4 yes 16 3.2 odd 2
76.2.f.a.31.7 yes 16 12.11 even 2
684.2.r.a.487.2 16 4.3 odd 2 inner
684.2.r.a.487.5 16 1.1 even 1 trivial
684.2.r.a.559.2 16 19.8 odd 6 inner
684.2.r.a.559.5 16 76.27 even 6 inner
1216.2.n.f.255.3 16 456.293 even 6
1216.2.n.f.255.6 16 456.179 odd 6
1216.2.n.f.639.3 16 24.11 even 2
1216.2.n.f.639.6 16 24.5 odd 2