L(s) = 1 | + (1.35 − 3.26i)5-s + (0.666 + 1.60i)7-s + (3.36 − 1.39i)11-s + 5.09i·13-s + (1.10 + 3.97i)17-s + (2.23 − 2.23i)19-s + (5.29 − 2.19i)23-s + (−5.30 − 5.30i)25-s + (−2.25 + 5.45i)29-s + (3.58 + 1.48i)31-s + 6.15·35-s + (0.0611 + 0.0253i)37-s + (−3.97 − 9.58i)41-s + (1.89 + 1.89i)43-s − 11.4i·47-s + ⋯ |
L(s) = 1 | + (0.605 − 1.46i)5-s + (0.251 + 0.608i)7-s + (1.01 − 0.420i)11-s + 1.41i·13-s + (0.266 + 0.963i)17-s + (0.512 − 0.512i)19-s + (1.10 − 0.457i)23-s + (−1.06 − 1.06i)25-s + (−0.419 + 1.01i)29-s + (0.644 + 0.267i)31-s + 1.04·35-s + (0.0100 + 0.00416i)37-s + (−0.620 − 1.49i)41-s + (0.289 + 0.289i)43-s − 1.66i·47-s + ⋯ |
Λ(s)=(=(1224s/2ΓC(s)L(s)(0.892+0.451i)Λ(2−s)
Λ(s)=(=(1224s/2ΓC(s+1/2)L(s)(0.892+0.451i)Λ(1−s)
Degree: |
2 |
Conductor: |
1224
= 23⋅32⋅17
|
Sign: |
0.892+0.451i
|
Analytic conductor: |
9.77368 |
Root analytic conductor: |
3.12629 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1224(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1224, ( :1/2), 0.892+0.451i)
|
Particular Values
L(1) |
≈ |
2.073657842 |
L(21) |
≈ |
2.073657842 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1+(−1.10−3.97i)T |
good | 5 | 1+(−1.35+3.26i)T+(−3.53−3.53i)T2 |
| 7 | 1+(−0.666−1.60i)T+(−4.94+4.94i)T2 |
| 11 | 1+(−3.36+1.39i)T+(7.77−7.77i)T2 |
| 13 | 1−5.09iT−13T2 |
| 19 | 1+(−2.23+2.23i)T−19iT2 |
| 23 | 1+(−5.29+2.19i)T+(16.2−16.2i)T2 |
| 29 | 1+(2.25−5.45i)T+(−20.5−20.5i)T2 |
| 31 | 1+(−3.58−1.48i)T+(21.9+21.9i)T2 |
| 37 | 1+(−0.0611−0.0253i)T+(26.1+26.1i)T2 |
| 41 | 1+(3.97+9.58i)T+(−28.9+28.9i)T2 |
| 43 | 1+(−1.89−1.89i)T+43iT2 |
| 47 | 1+11.4iT−47T2 |
| 53 | 1+(2.59−2.59i)T−53iT2 |
| 59 | 1+(2.93+2.93i)T+59iT2 |
| 61 | 1+(1.53+3.69i)T+(−43.1+43.1i)T2 |
| 67 | 1+8.84T+67T2 |
| 71 | 1+(1.37+0.569i)T+(50.2+50.2i)T2 |
| 73 | 1+(3.83−9.26i)T+(−51.6−51.6i)T2 |
| 79 | 1+(−13.1+5.44i)T+(55.8−55.8i)T2 |
| 83 | 1+(2.07−2.07i)T−83iT2 |
| 89 | 1+2.32iT−89T2 |
| 97 | 1+(2.22−5.36i)T+(−68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.227986897390371410370244321908, −8.967327809589323334176818578077, −8.463873697655531110389576632554, −7.08051873195725505913828589555, −6.24230136504917328514397497383, −5.32944233895467335752976256205, −4.67307482797752877352524813383, −3.63195282592006708154928865669, −2.00928312257971940617224437888, −1.16427421841640735609977760857,
1.23032400032903346941640626804, 2.73152174446946201420608810293, 3.38290595757971699215656096957, 4.62603598919339874723225688583, 5.77106957311642162879621299695, 6.47675892592634765113797225485, 7.40016555638113715114252503226, 7.78655219541385471388096239832, 9.261987594558129264576760646133, 9.877339461562861794603390445886