Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1224,2,Mod(145,1224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1224.145");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1224.bq (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 136) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145.1 |
|
0 | 0 | 0 | −1.33137 | + | 3.21420i | 0 | 0.934059 | + | 2.25502i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
145.2 | 0 | 0 | 0 | 0.392531 | − | 0.947653i | 0 | −0.893542 | − | 2.15720i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
145.3 | 0 | 0 | 0 | 1.35305 | − | 3.26655i | 0 | 0.666590 | + | 1.60929i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
433.1 | 0 | 0 | 0 | −3.31685 | − | 1.37389i | 0 | −3.66830 | + | 1.51946i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
433.2 | 0 | 0 | 0 | −0.194339 | − | 0.0804980i | 0 | −1.76317 | + | 0.730328i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
433.3 | 0 | 0 | 0 | 1.09698 | + | 0.454383i | 0 | 4.72436 | − | 1.95689i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
865.1 | 0 | 0 | 0 | −3.31685 | + | 1.37389i | 0 | −3.66830 | − | 1.51946i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
865.2 | 0 | 0 | 0 | −0.194339 | + | 0.0804980i | 0 | −1.76317 | − | 0.730328i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
865.3 | 0 | 0 | 0 | 1.09698 | − | 0.454383i | 0 | 4.72436 | + | 1.95689i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
937.1 | 0 | 0 | 0 | −1.33137 | − | 3.21420i | 0 | 0.934059 | − | 2.25502i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
937.2 | 0 | 0 | 0 | 0.392531 | + | 0.947653i | 0 | −0.893542 | + | 2.15720i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
937.3 | 0 | 0 | 0 | 1.35305 | + | 3.26655i | 0 | 0.666590 | − | 1.60929i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1224.2.bq.c | 12 | |
3.b | odd | 2 | 1 | 136.2.n.c | ✓ | 12 | |
12.b | even | 2 | 1 | 272.2.v.f | 12 | ||
17.d | even | 8 | 1 | inner | 1224.2.bq.c | 12 | |
51.g | odd | 8 | 1 | 136.2.n.c | ✓ | 12 | |
51.i | even | 16 | 2 | 2312.2.a.w | 12 | ||
51.i | even | 16 | 2 | 2312.2.b.n | 12 | ||
204.p | even | 8 | 1 | 272.2.v.f | 12 | ||
204.t | odd | 16 | 2 | 4624.2.a.bt | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
136.2.n.c | ✓ | 12 | 3.b | odd | 2 | 1 | |
136.2.n.c | ✓ | 12 | 51.g | odd | 8 | 1 | |
272.2.v.f | 12 | 12.b | even | 2 | 1 | ||
272.2.v.f | 12 | 204.p | even | 8 | 1 | ||
1224.2.bq.c | 12 | 1.a | even | 1 | 1 | trivial | |
1224.2.bq.c | 12 | 17.d | even | 8 | 1 | inner | |
2312.2.a.w | 12 | 51.i | even | 16 | 2 | ||
2312.2.b.n | 12 | 51.i | even | 16 | 2 | ||
4624.2.a.bt | 12 | 204.t | odd | 16 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .