Properties

Label 1224.2.bq.c
Level $1224$
Weight $2$
Character orbit 1224.bq
Analytic conductor $9.774$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(145,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1224.bq (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77368920740\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 258x^{8} + 880x^{6} + 1033x^{4} + 132x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{9} q^{5} + (\beta_{10} - \beta_{9} - \beta_{8} + \cdots + 1) q^{7} + ( - \beta_{10} - \beta_{9} + \beta_{7} + \cdots + 1) q^{11} + (\beta_{7} - \beta_{6} + \cdots + 2 \beta_1) q^{13} + ( - \beta_{8} - 2 \beta_{7} + \cdots - \beta_{3}) q^{17}+ \cdots + (2 \beta_{9} - 3 \beta_{7} + 2 \beta_{6} + \cdots - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{5} + 12 q^{11} - 4 q^{17} - 4 q^{19} + 8 q^{23} - 16 q^{25} - 8 q^{29} - 32 q^{31} + 32 q^{35} + 4 q^{37} - 16 q^{41} + 8 q^{43} + 44 q^{49} + 8 q^{53} - 16 q^{59} + 44 q^{61} + 20 q^{65} - 40 q^{67}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} + 28x^{10} + 258x^{8} + 880x^{6} + 1033x^{4} + 132x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -9\nu^{11} - 250\nu^{9} - 2274\nu^{7} - 7596\nu^{5} - 8901\nu^{3} - 1658\nu ) / 272 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 39 \nu^{11} + 17 \nu^{10} - 1089 \nu^{9} + 459 \nu^{8} - 9973 \nu^{7} + 3927 \nu^{6} - 33443 \nu^{5} + \cdots + 612 ) / 1088 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 39 \nu^{11} - 25 \nu^{10} + 1089 \nu^{9} - 651 \nu^{8} + 9973 \nu^{7} - 5223 \nu^{6} + 33443 \nu^{5} + \cdots - 756 ) / 1088 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 39 \nu^{11} + 17 \nu^{10} + 1089 \nu^{9} + 459 \nu^{8} + 9973 \nu^{7} + 3927 \nu^{6} + 33443 \nu^{5} + \cdots + 612 ) / 1088 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 39 \nu^{11} - 25 \nu^{10} - 1089 \nu^{9} - 651 \nu^{8} - 9973 \nu^{7} - 5223 \nu^{6} - 33443 \nu^{5} + \cdots - 756 ) / 1088 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 153 \nu^{11} - 39 \nu^{10} + 4267 \nu^{9} - 1089 \nu^{8} + 39015 \nu^{7} - 9973 \nu^{6} + 130713 \nu^{5} + \cdots - 2436 ) / 1088 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 153 \nu^{11} - 39 \nu^{10} - 4267 \nu^{9} - 1089 \nu^{8} - 39015 \nu^{7} - 9973 \nu^{6} + \cdots - 2436 ) / 1088 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 119 \nu^{11} - 27 \nu^{10} + 3315 \nu^{9} - 767 \nu^{8} + 30243 \nu^{7} - 7247 \nu^{6} + 100725 \nu^{5} + \cdots - 2016 ) / 544 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 119 \nu^{11} - 27 \nu^{10} - 3315 \nu^{9} - 767 \nu^{8} - 30243 \nu^{7} - 7247 \nu^{6} + \cdots - 2016 ) / 544 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 123 \nu^{11} - 41 \nu^{10} + 3445 \nu^{9} - 1137 \nu^{8} + 31741 \nu^{7} - 10297 \nu^{6} + 107943 \nu^{5} + \cdots - 1384 ) / 544 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 123 \nu^{11} - 41 \nu^{10} - 3445 \nu^{9} - 1137 \nu^{8} - 31741 \nu^{7} - 10297 \nu^{6} + \cdots - 1384 ) / 544 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{11} + 2\beta_{10} - 4\beta_{7} - 4\beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} - \beta_{2} - 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{7} - 2\beta_{6} - 13\beta_{5} - 7\beta_{4} + 13\beta_{3} + 7\beta_{2} - 4\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 20 \beta_{11} - 20 \beta_{10} - 6 \beta_{9} - 6 \beta_{8} + 52 \beta_{7} + 52 \beta_{6} + 9 \beta_{5} + \cdots + 80 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2 \beta_{11} - 2 \beta_{10} + 6 \beta_{9} - 6 \beta_{8} - 42 \beta_{7} + 42 \beta_{6} + 155 \beta_{5} + \cdots + 64 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 218 \beta_{11} + 218 \beta_{10} + 84 \beta_{9} + 84 \beta_{8} - 612 \beta_{7} - 612 \beta_{6} + \cdots - 884 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 52 \beta_{11} + 52 \beta_{10} - 132 \beta_{9} + 132 \beta_{8} + 670 \beta_{7} - 670 \beta_{6} + \cdots - 964 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 2452 \beta_{11} - 2452 \beta_{10} - 998 \beta_{9} - 998 \beta_{8} + 7084 \beta_{7} + 7084 \beta_{6} + \cdots + 10072 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 906 \beta_{11} - 906 \beta_{10} + 2214 \beta_{9} - 2214 \beta_{8} - 9690 \beta_{7} + 9690 \beta_{6} + \cdots + 13760 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 27962 \beta_{11} + 27962 \beta_{10} + 11532 \beta_{9} + 11532 \beta_{8} - 82108 \beta_{7} + \cdots - 116276 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 13716 \beta_{11} + 13716 \beta_{10} - 33212 \beta_{9} + 33212 \beta_{8} + 133350 \beta_{7} + \cdots - 188772 \beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(613\) \(649\) \(919\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1
0.306239i
3.49562i
3.18938i
1.54190i
1.75800i
0.216105i
1.54190i
1.75800i
0.216105i
0.306239i
3.49562i
3.18938i
0 0 0 −1.33137 + 3.21420i 0 0.934059 + 2.25502i 0 0 0
145.2 0 0 0 0.392531 0.947653i 0 −0.893542 2.15720i 0 0 0
145.3 0 0 0 1.35305 3.26655i 0 0.666590 + 1.60929i 0 0 0
433.1 0 0 0 −3.31685 1.37389i 0 −3.66830 + 1.51946i 0 0 0
433.2 0 0 0 −0.194339 0.0804980i 0 −1.76317 + 0.730328i 0 0 0
433.3 0 0 0 1.09698 + 0.454383i 0 4.72436 1.95689i 0 0 0
865.1 0 0 0 −3.31685 + 1.37389i 0 −3.66830 1.51946i 0 0 0
865.2 0 0 0 −0.194339 + 0.0804980i 0 −1.76317 0.730328i 0 0 0
865.3 0 0 0 1.09698 0.454383i 0 4.72436 + 1.95689i 0 0 0
937.1 0 0 0 −1.33137 3.21420i 0 0.934059 2.25502i 0 0 0
937.2 0 0 0 0.392531 + 0.947653i 0 −0.893542 + 2.15720i 0 0 0
937.3 0 0 0 1.35305 + 3.26655i 0 0.666590 1.60929i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 145.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.bq.c 12
3.b odd 2 1 136.2.n.c 12
12.b even 2 1 272.2.v.f 12
17.d even 8 1 inner 1224.2.bq.c 12
51.g odd 8 1 136.2.n.c 12
51.i even 16 2 2312.2.a.w 12
51.i even 16 2 2312.2.b.n 12
204.p even 8 1 272.2.v.f 12
204.t odd 16 2 4624.2.a.bt 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.2.n.c 12 3.b odd 2 1
136.2.n.c 12 51.g odd 8 1
272.2.v.f 12 12.b even 2 1
272.2.v.f 12 204.p even 8 1
1224.2.bq.c 12 1.a even 1 1 trivial
1224.2.bq.c 12 17.d even 8 1 inner
2312.2.a.w 12 51.i even 16 2
2312.2.b.n 12 51.i even 16 2
4624.2.a.bt 12 204.t odd 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} + 4 T_{5}^{11} + 16 T_{5}^{10} + 56 T_{5}^{9} + 160 T_{5}^{8} + 328 T_{5}^{7} + 288 T_{5}^{6} + \cdots + 128 \) acting on \(S_{2}^{\mathrm{new}}(1224, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} + 4 T^{11} + \cdots + 128 \) Copy content Toggle raw display
$7$ \( T^{12} - 22 T^{10} + \cdots + 147968 \) Copy content Toggle raw display
$11$ \( T^{12} - 12 T^{11} + \cdots + 16928 \) Copy content Toggle raw display
$13$ \( T^{12} + 92 T^{10} + \cdots + 262144 \) Copy content Toggle raw display
$17$ \( T^{12} + 4 T^{11} + \cdots + 24137569 \) Copy content Toggle raw display
$19$ \( T^{12} + 4 T^{11} + \cdots + 1024 \) Copy content Toggle raw display
$23$ \( T^{12} - 8 T^{11} + \cdots + 43655168 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 118210688 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 103219712 \) Copy content Toggle raw display
$37$ \( T^{12} - 4 T^{11} + \cdots + 512 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 591542408 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 148254976 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 440664064 \) Copy content Toggle raw display
$53$ \( T^{12} - 8 T^{11} + \cdots + 25080064 \) Copy content Toggle raw display
$59$ \( T^{12} + 16 T^{11} + \cdots + 9339136 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 118949888 \) Copy content Toggle raw display
$67$ \( (T^{6} + 20 T^{5} + \cdots + 28928)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} + 32 T^{11} + \cdots + 10913792 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 545424392 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 1130596352 \) Copy content Toggle raw display
$83$ \( T^{12} + 40 T^{11} + \cdots + 256 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 12558340096 \) Copy content Toggle raw display
$97$ \( T^{12} + 16 T^{11} + \cdots + 30451208 \) Copy content Toggle raw display
show more
show less