Properties

Label 1224.2.bq.c
Level 12241224
Weight 22
Character orbit 1224.bq
Analytic conductor 9.7749.774
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(145,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1224.bq (of order 88, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.773689207409.77368920740
Analytic rank: 00
Dimension: 1212
Relative dimension: 33 over Q(ζ8)\Q(\zeta_{8})
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+28x10+258x8+880x6+1033x4+132x2+4 x^{12} + 28x^{10} + 258x^{8} + 880x^{6} + 1033x^{4} + 132x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: SU(2)[C8]\mathrm{SU}(2)[C_{8}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ9q5+(β10β9β8++1)q7+(β10β9+β7++1)q11+(β7β6++2β1)q13+(β82β7+β3)q17++(2β93β7+2β6+2)q97+O(q100) q - \beta_{9} q^{5} + (\beta_{10} - \beta_{9} - \beta_{8} + \cdots + 1) q^{7} + ( - \beta_{10} - \beta_{9} + \beta_{7} + \cdots + 1) q^{11} + (\beta_{7} - \beta_{6} + \cdots + 2 \beta_1) q^{13} + ( - \beta_{8} - 2 \beta_{7} + \cdots - \beta_{3}) q^{17}+ \cdots + (2 \beta_{9} - 3 \beta_{7} + 2 \beta_{6} + \cdots - 2) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q4q5+12q114q174q19+8q2316q258q2932q31+32q35+4q3716q41+8q43+44q49+8q5316q59+44q61+20q6540q67+16q97+O(q100) 12 q - 4 q^{5} + 12 q^{11} - 4 q^{17} - 4 q^{19} + 8 q^{23} - 16 q^{25} - 8 q^{29} - 32 q^{31} + 32 q^{35} + 4 q^{37} - 16 q^{41} + 8 q^{43} + 44 q^{49} + 8 q^{53} - 16 q^{59} + 44 q^{61} + 20 q^{65} - 40 q^{67}+ \cdots - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+28x10+258x8+880x6+1033x4+132x2+4 x^{12} + 28x^{10} + 258x^{8} + 880x^{6} + 1033x^{4} + 132x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (9ν11250ν92274ν77596ν58901ν31658ν)/272 ( -9\nu^{11} - 250\nu^{9} - 2274\nu^{7} - 7596\nu^{5} - 8901\nu^{3} - 1658\nu ) / 272 Copy content Toggle raw display
β2\beta_{2}== (39ν11+17ν101089ν9+459ν89973ν7+3927ν633443ν5++612)/1088 ( - 39 \nu^{11} + 17 \nu^{10} - 1089 \nu^{9} + 459 \nu^{8} - 9973 \nu^{7} + 3927 \nu^{6} - 33443 \nu^{5} + \cdots + 612 ) / 1088 Copy content Toggle raw display
β3\beta_{3}== (39ν1125ν10+1089ν9651ν8+9973ν75223ν6+33443ν5+756)/1088 ( 39 \nu^{11} - 25 \nu^{10} + 1089 \nu^{9} - 651 \nu^{8} + 9973 \nu^{7} - 5223 \nu^{6} + 33443 \nu^{5} + \cdots - 756 ) / 1088 Copy content Toggle raw display
β4\beta_{4}== (39ν11+17ν10+1089ν9+459ν8+9973ν7+3927ν6+33443ν5++612)/1088 ( 39 \nu^{11} + 17 \nu^{10} + 1089 \nu^{9} + 459 \nu^{8} + 9973 \nu^{7} + 3927 \nu^{6} + 33443 \nu^{5} + \cdots + 612 ) / 1088 Copy content Toggle raw display
β5\beta_{5}== (39ν1125ν101089ν9651ν89973ν75223ν633443ν5+756)/1088 ( - 39 \nu^{11} - 25 \nu^{10} - 1089 \nu^{9} - 651 \nu^{8} - 9973 \nu^{7} - 5223 \nu^{6} - 33443 \nu^{5} + \cdots - 756 ) / 1088 Copy content Toggle raw display
β6\beta_{6}== (153ν1139ν10+4267ν91089ν8+39015ν79973ν6+130713ν5+2436)/1088 ( 153 \nu^{11} - 39 \nu^{10} + 4267 \nu^{9} - 1089 \nu^{8} + 39015 \nu^{7} - 9973 \nu^{6} + 130713 \nu^{5} + \cdots - 2436 ) / 1088 Copy content Toggle raw display
β7\beta_{7}== (153ν1139ν104267ν91089ν839015ν79973ν6+2436)/1088 ( - 153 \nu^{11} - 39 \nu^{10} - 4267 \nu^{9} - 1089 \nu^{8} - 39015 \nu^{7} - 9973 \nu^{6} + \cdots - 2436 ) / 1088 Copy content Toggle raw display
β8\beta_{8}== (119ν1127ν10+3315ν9767ν8+30243ν77247ν6+100725ν5+2016)/544 ( 119 \nu^{11} - 27 \nu^{10} + 3315 \nu^{9} - 767 \nu^{8} + 30243 \nu^{7} - 7247 \nu^{6} + 100725 \nu^{5} + \cdots - 2016 ) / 544 Copy content Toggle raw display
β9\beta_{9}== (119ν1127ν103315ν9767ν830243ν77247ν6+2016)/544 ( - 119 \nu^{11} - 27 \nu^{10} - 3315 \nu^{9} - 767 \nu^{8} - 30243 \nu^{7} - 7247 \nu^{6} + \cdots - 2016 ) / 544 Copy content Toggle raw display
β10\beta_{10}== (123ν1141ν10+3445ν91137ν8+31741ν710297ν6+107943ν5+1384)/544 ( 123 \nu^{11} - 41 \nu^{10} + 3445 \nu^{9} - 1137 \nu^{8} + 31741 \nu^{7} - 10297 \nu^{6} + 107943 \nu^{5} + \cdots - 1384 ) / 544 Copy content Toggle raw display
β11\beta_{11}== (123ν1141ν103445ν91137ν831741ν710297ν6+1384)/544 ( - 123 \nu^{11} - 41 \nu^{10} - 3445 \nu^{9} - 1137 \nu^{8} - 31741 \nu^{7} - 10297 \nu^{6} + \cdots - 1384 ) / 544 Copy content Toggle raw display
ν\nu== (β5+β4β3β2)/2 ( \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (2β11+2β104β74β6β5β4β3β28)/2 ( 2\beta_{11} + 2\beta_{10} - 4\beta_{7} - 4\beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} - \beta_{2} - 8 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β72β613β57β4+13β3+7β24β1)/2 ( 2\beta_{7} - 2\beta_{6} - 13\beta_{5} - 7\beta_{4} + 13\beta_{3} + 7\beta_{2} - 4\beta_1 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (20β1120β106β96β8+52β7+52β6+9β5++80)/2 ( - 20 \beta_{11} - 20 \beta_{10} - 6 \beta_{9} - 6 \beta_{8} + 52 \beta_{7} + 52 \beta_{6} + 9 \beta_{5} + \cdots + 80 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (2β112β10+6β96β842β7+42β6+155β5++64β1)/2 ( 2 \beta_{11} - 2 \beta_{10} + 6 \beta_{9} - 6 \beta_{8} - 42 \beta_{7} + 42 \beta_{6} + 155 \beta_{5} + \cdots + 64 \beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (218β11+218β10+84β9+84β8612β7612β6+884)/2 ( 218 \beta_{11} + 218 \beta_{10} + 84 \beta_{9} + 84 \beta_{8} - 612 \beta_{7} - 612 \beta_{6} + \cdots - 884 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (52β11+52β10132β9+132β8+670β7670β6+964β1)/2 ( - 52 \beta_{11} + 52 \beta_{10} - 132 \beta_{9} + 132 \beta_{8} + 670 \beta_{7} - 670 \beta_{6} + \cdots - 964 \beta_1 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== (2452β112452β10998β9998β8+7084β7+7084β6++10072)/2 ( - 2452 \beta_{11} - 2452 \beta_{10} - 998 \beta_{9} - 998 \beta_{8} + 7084 \beta_{7} + 7084 \beta_{6} + \cdots + 10072 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (906β11906β10+2214β92214β89690β7+9690β6++13760β1)/2 ( 906 \beta_{11} - 906 \beta_{10} + 2214 \beta_{9} - 2214 \beta_{8} - 9690 \beta_{7} + 9690 \beta_{6} + \cdots + 13760 \beta_1 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== (27962β11+27962β10+11532β9+11532β882108β7+116276)/2 ( 27962 \beta_{11} + 27962 \beta_{10} + 11532 \beta_{9} + 11532 \beta_{8} - 82108 \beta_{7} + \cdots - 116276 ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (13716β11+13716β1033212β9+33212β8+133350β7+188772β1)/2 ( - 13716 \beta_{11} + 13716 \beta_{10} - 33212 \beta_{9} + 33212 \beta_{8} + 133350 \beta_{7} + \cdots - 188772 \beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1224Z)×\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times.

nn 137137 613613 649649 919919
χ(n)\chi(n) 11 11 β6\beta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
145.1
0.306239i
3.49562i
3.18938i
1.54190i
1.75800i
0.216105i
1.54190i
1.75800i
0.216105i
0.306239i
3.49562i
3.18938i
0 0 0 −1.33137 + 3.21420i 0 0.934059 + 2.25502i 0 0 0
145.2 0 0 0 0.392531 0.947653i 0 −0.893542 2.15720i 0 0 0
145.3 0 0 0 1.35305 3.26655i 0 0.666590 + 1.60929i 0 0 0
433.1 0 0 0 −3.31685 1.37389i 0 −3.66830 + 1.51946i 0 0 0
433.2 0 0 0 −0.194339 0.0804980i 0 −1.76317 + 0.730328i 0 0 0
433.3 0 0 0 1.09698 + 0.454383i 0 4.72436 1.95689i 0 0 0
865.1 0 0 0 −3.31685 + 1.37389i 0 −3.66830 1.51946i 0 0 0
865.2 0 0 0 −0.194339 + 0.0804980i 0 −1.76317 0.730328i 0 0 0
865.3 0 0 0 1.09698 0.454383i 0 4.72436 + 1.95689i 0 0 0
937.1 0 0 0 −1.33137 3.21420i 0 0.934059 2.25502i 0 0 0
937.2 0 0 0 0.392531 + 0.947653i 0 −0.893542 + 2.15720i 0 0 0
937.3 0 0 0 1.35305 + 3.26655i 0 0.666590 1.60929i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 145.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.bq.c 12
3.b odd 2 1 136.2.n.c 12
12.b even 2 1 272.2.v.f 12
17.d even 8 1 inner 1224.2.bq.c 12
51.g odd 8 1 136.2.n.c 12
51.i even 16 2 2312.2.a.w 12
51.i even 16 2 2312.2.b.n 12
204.p even 8 1 272.2.v.f 12
204.t odd 16 2 4624.2.a.bt 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.2.n.c 12 3.b odd 2 1
136.2.n.c 12 51.g odd 8 1
272.2.v.f 12 12.b even 2 1
272.2.v.f 12 204.p even 8 1
1224.2.bq.c 12 1.a even 1 1 trivial
1224.2.bq.c 12 17.d even 8 1 inner
2312.2.a.w 12 51.i even 16 2
2312.2.b.n 12 51.i even 16 2
4624.2.a.bt 12 204.t odd 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T512+4T511+16T510+56T59+160T58+328T57+288T56++128 T_{5}^{12} + 4 T_{5}^{11} + 16 T_{5}^{10} + 56 T_{5}^{9} + 160 T_{5}^{8} + 328 T_{5}^{7} + 288 T_{5}^{6} + \cdots + 128 acting on S2new(1224,[χ])S_{2}^{\mathrm{new}}(1224, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+4T11++128 T^{12} + 4 T^{11} + \cdots + 128 Copy content Toggle raw display
77 T1222T10++147968 T^{12} - 22 T^{10} + \cdots + 147968 Copy content Toggle raw display
1111 T1212T11++16928 T^{12} - 12 T^{11} + \cdots + 16928 Copy content Toggle raw display
1313 T12+92T10++262144 T^{12} + 92 T^{10} + \cdots + 262144 Copy content Toggle raw display
1717 T12+4T11++24137569 T^{12} + 4 T^{11} + \cdots + 24137569 Copy content Toggle raw display
1919 T12+4T11++1024 T^{12} + 4 T^{11} + \cdots + 1024 Copy content Toggle raw display
2323 T128T11++43655168 T^{12} - 8 T^{11} + \cdots + 43655168 Copy content Toggle raw display
2929 T12++118210688 T^{12} + \cdots + 118210688 Copy content Toggle raw display
3131 T12++103219712 T^{12} + \cdots + 103219712 Copy content Toggle raw display
3737 T124T11++512 T^{12} - 4 T^{11} + \cdots + 512 Copy content Toggle raw display
4141 T12++591542408 T^{12} + \cdots + 591542408 Copy content Toggle raw display
4343 T12++148254976 T^{12} + \cdots + 148254976 Copy content Toggle raw display
4747 T12++440664064 T^{12} + \cdots + 440664064 Copy content Toggle raw display
5353 T128T11++25080064 T^{12} - 8 T^{11} + \cdots + 25080064 Copy content Toggle raw display
5959 T12+16T11++9339136 T^{12} + 16 T^{11} + \cdots + 9339136 Copy content Toggle raw display
6161 T12++118949888 T^{12} + \cdots + 118949888 Copy content Toggle raw display
6767 (T6+20T5++28928)2 (T^{6} + 20 T^{5} + \cdots + 28928)^{2} Copy content Toggle raw display
7171 T12+32T11++10913792 T^{12} + 32 T^{11} + \cdots + 10913792 Copy content Toggle raw display
7373 T12++545424392 T^{12} + \cdots + 545424392 Copy content Toggle raw display
7979 T12++1130596352 T^{12} + \cdots + 1130596352 Copy content Toggle raw display
8383 T12+40T11++256 T^{12} + 40 T^{11} + \cdots + 256 Copy content Toggle raw display
8989 T12++12558340096 T^{12} + \cdots + 12558340096 Copy content Toggle raw display
9797 T12+16T11++30451208 T^{12} + 16 T^{11} + \cdots + 30451208 Copy content Toggle raw display
show more
show less