L(s) = 1 | + (−3.31 − 1.37i)5-s + (−3.66 + 1.51i)7-s + (0.147 + 0.355i)11-s + 1.23i·13-s + (4.06 + 0.666i)17-s + (−0.0317 + 0.0317i)19-s + (−2.04 − 4.93i)23-s + (5.57 + 5.57i)25-s + (4.62 + 1.91i)29-s + (0.946 − 2.28i)31-s + 14.2·35-s + (1.90 − 4.59i)37-s + (−1.75 + 0.728i)41-s + (6.76 + 6.76i)43-s − 2.73i·47-s + ⋯ |
L(s) = 1 | + (−1.48 − 0.614i)5-s + (−1.38 + 0.574i)7-s + (0.0444 + 0.107i)11-s + 0.342i·13-s + (0.986 + 0.161i)17-s + (−0.00727 + 0.00727i)19-s + (−0.426 − 1.02i)23-s + (1.11 + 1.11i)25-s + (0.858 + 0.355i)29-s + (0.170 − 0.410i)31-s + 2.40·35-s + (0.312 − 0.755i)37-s + (−0.274 + 0.113i)41-s + (1.03 + 1.03i)43-s − 0.398i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0863i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0863i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8669774929\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8669774929\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (-4.06 - 0.666i)T \) |
good | 5 | \( 1 + (3.31 + 1.37i)T + (3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (3.66 - 1.51i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.147 - 0.355i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 1.23iT - 13T^{2} \) |
| 19 | \( 1 + (0.0317 - 0.0317i)T - 19iT^{2} \) |
| 23 | \( 1 + (2.04 + 4.93i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-4.62 - 1.91i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-0.946 + 2.28i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-1.90 + 4.59i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (1.75 - 0.728i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-6.76 - 6.76i)T + 43iT^{2} \) |
| 47 | \( 1 + 2.73iT - 47T^{2} \) |
| 53 | \( 1 + (-6.87 + 6.87i)T - 53iT^{2} \) |
| 59 | \( 1 + (-7.58 - 7.58i)T + 59iT^{2} \) |
| 61 | \( 1 + (-12.3 + 5.12i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 4.69T + 67T^{2} \) |
| 71 | \( 1 + (3.55 - 8.57i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (5.02 + 2.08i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (1.58 + 3.83i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (1.37 - 1.37i)T - 83iT^{2} \) |
| 89 | \( 1 - 10.9iT - 89T^{2} \) |
| 97 | \( 1 + (-6.88 - 2.85i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.661336017730781098934200475294, −8.783758344797768336761039762162, −8.200549112758727790541170307130, −7.28158748653232634076909275820, −6.45543473717053227349773819118, −5.49849753783661670796755010502, −4.34906003870503064340188799263, −3.65195266884981260970640982326, −2.64296283313921754951680727790, −0.67490892199528815424594477083,
0.67328054559012428692933793527, 2.91186936746385387183974146520, 3.51747951205868498264853709023, 4.23995536016906616789907982626, 5.63184005827182356534136074786, 6.61943587179762728848537365173, 7.32019312466692670224369987061, 7.88388947285219507636795221769, 8.870551574365622599499674640522, 10.02661203129232837548338731603