L(s) = 1 | + (−0.194 + 0.0804i)5-s + (−1.76 − 0.730i)7-s + (−0.356 + 0.861i)11-s − 5.90i·13-s + (−4.07 + 0.626i)17-s + (3.51 + 3.51i)19-s + (−1.71 + 4.14i)23-s + (−3.50 + 3.50i)25-s + (−6.46 + 2.67i)29-s + (−1.31 − 3.17i)31-s + 0.401·35-s + (−1.21 − 2.94i)37-s + (−7.03 − 2.91i)41-s + (−2.78 + 2.78i)43-s − 9.54i·47-s + ⋯ |
L(s) = 1 | + (−0.0869 + 0.0359i)5-s + (−0.666 − 0.276i)7-s + (−0.107 + 0.259i)11-s − 1.63i·13-s + (−0.988 + 0.151i)17-s + (0.807 + 0.807i)19-s + (−0.357 + 0.864i)23-s + (−0.700 + 0.700i)25-s + (−1.20 + 0.497i)29-s + (−0.235 − 0.569i)31-s + 0.0678·35-s + (−0.200 − 0.484i)37-s + (−1.09 − 0.454i)41-s + (−0.424 + 0.424i)43-s − 1.39i·47-s + ⋯ |
Λ(s)=(=(1224s/2ΓC(s)L(s)(−0.997+0.0765i)Λ(2−s)
Λ(s)=(=(1224s/2ΓC(s+1/2)L(s)(−0.997+0.0765i)Λ(1−s)
Degree: |
2 |
Conductor: |
1224
= 23⋅32⋅17
|
Sign: |
−0.997+0.0765i
|
Analytic conductor: |
9.77368 |
Root analytic conductor: |
3.12629 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1224(865,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1224, ( :1/2), −0.997+0.0765i)
|
Particular Values
L(1) |
≈ |
0.1440610403 |
L(21) |
≈ |
0.1440610403 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1+(4.07−0.626i)T |
good | 5 | 1+(0.194−0.0804i)T+(3.53−3.53i)T2 |
| 7 | 1+(1.76+0.730i)T+(4.94+4.94i)T2 |
| 11 | 1+(0.356−0.861i)T+(−7.77−7.77i)T2 |
| 13 | 1+5.90iT−13T2 |
| 19 | 1+(−3.51−3.51i)T+19iT2 |
| 23 | 1+(1.71−4.14i)T+(−16.2−16.2i)T2 |
| 29 | 1+(6.46−2.67i)T+(20.5−20.5i)T2 |
| 31 | 1+(1.31+3.17i)T+(−21.9+21.9i)T2 |
| 37 | 1+(1.21+2.94i)T+(−26.1+26.1i)T2 |
| 41 | 1+(7.03+2.91i)T+(28.9+28.9i)T2 |
| 43 | 1+(2.78−2.78i)T−43iT2 |
| 47 | 1+9.54iT−47T2 |
| 53 | 1+(2.21+2.21i)T+53iT2 |
| 59 | 1+(1.95−1.95i)T−59iT2 |
| 61 | 1+(0.440+0.182i)T+(43.1+43.1i)T2 |
| 67 | 1+4.33T+67T2 |
| 71 | 1+(−0.788−1.90i)T+(−50.2+50.2i)T2 |
| 73 | 1+(−0.971+0.402i)T+(51.6−51.6i)T2 |
| 79 | 1+(4.85−11.7i)T+(−55.8−55.8i)T2 |
| 83 | 1+(0.666+0.666i)T+83iT2 |
| 89 | 1+3.51iT−89T2 |
| 97 | 1+(2.66−1.10i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.535222226919080768547267417827, −8.438080380934797369749124151131, −7.63161136128615561258958744252, −6.98846097320724757836248566861, −5.80822986207345468057301404839, −5.27952271847988957921678069443, −3.82735661817537604550586473918, −3.24485196523131937069218728581, −1.80202373146773350172865268312, −0.05718743257844003992543604137,
1.87644378047934720040101358116, 2.96825939437664641426028244298, 4.12504563291512671957755401355, 4.91097384708059495257024600678, 6.18605430110380418276522144542, 6.67197043006146292225290878652, 7.61017030431864684126486436354, 8.712054211757516953428113995209, 9.249791287085917028317828069840, 9.949068967962198841350963388478