Properties

Label 2-1224-17.15-c1-0-22
Degree 22
Conductor 12241224
Sign 0.997+0.0765i-0.997 + 0.0765i
Analytic cond. 9.773689.77368
Root an. cond. 3.126293.12629
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.194 + 0.0804i)5-s + (−1.76 − 0.730i)7-s + (−0.356 + 0.861i)11-s − 5.90i·13-s + (−4.07 + 0.626i)17-s + (3.51 + 3.51i)19-s + (−1.71 + 4.14i)23-s + (−3.50 + 3.50i)25-s + (−6.46 + 2.67i)29-s + (−1.31 − 3.17i)31-s + 0.401·35-s + (−1.21 − 2.94i)37-s + (−7.03 − 2.91i)41-s + (−2.78 + 2.78i)43-s − 9.54i·47-s + ⋯
L(s)  = 1  + (−0.0869 + 0.0359i)5-s + (−0.666 − 0.276i)7-s + (−0.107 + 0.259i)11-s − 1.63i·13-s + (−0.988 + 0.151i)17-s + (0.807 + 0.807i)19-s + (−0.357 + 0.864i)23-s + (−0.700 + 0.700i)25-s + (−1.20 + 0.497i)29-s + (−0.235 − 0.569i)31-s + 0.0678·35-s + (−0.200 − 0.484i)37-s + (−1.09 − 0.454i)41-s + (−0.424 + 0.424i)43-s − 1.39i·47-s + ⋯

Functional equation

Λ(s)=(1224s/2ΓC(s)L(s)=((0.997+0.0765i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0765i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1224s/2ΓC(s+1/2)L(s)=((0.997+0.0765i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0765i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 12241224    =    2332172^{3} \cdot 3^{2} \cdot 17
Sign: 0.997+0.0765i-0.997 + 0.0765i
Analytic conductor: 9.773689.77368
Root analytic conductor: 3.126293.12629
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1224(865,)\chi_{1224} (865, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1224, ( :1/2), 0.997+0.0765i)(2,\ 1224,\ (\ :1/2),\ -0.997 + 0.0765i)

Particular Values

L(1)L(1) \approx 0.14406104030.1440610403
L(12)L(\frac12) \approx 0.14406104030.1440610403
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
17 1+(4.070.626i)T 1 + (4.07 - 0.626i)T
good5 1+(0.1940.0804i)T+(3.533.53i)T2 1 + (0.194 - 0.0804i)T + (3.53 - 3.53i)T^{2}
7 1+(1.76+0.730i)T+(4.94+4.94i)T2 1 + (1.76 + 0.730i)T + (4.94 + 4.94i)T^{2}
11 1+(0.3560.861i)T+(7.777.77i)T2 1 + (0.356 - 0.861i)T + (-7.77 - 7.77i)T^{2}
13 1+5.90iT13T2 1 + 5.90iT - 13T^{2}
19 1+(3.513.51i)T+19iT2 1 + (-3.51 - 3.51i)T + 19iT^{2}
23 1+(1.714.14i)T+(16.216.2i)T2 1 + (1.71 - 4.14i)T + (-16.2 - 16.2i)T^{2}
29 1+(6.462.67i)T+(20.520.5i)T2 1 + (6.46 - 2.67i)T + (20.5 - 20.5i)T^{2}
31 1+(1.31+3.17i)T+(21.9+21.9i)T2 1 + (1.31 + 3.17i)T + (-21.9 + 21.9i)T^{2}
37 1+(1.21+2.94i)T+(26.1+26.1i)T2 1 + (1.21 + 2.94i)T + (-26.1 + 26.1i)T^{2}
41 1+(7.03+2.91i)T+(28.9+28.9i)T2 1 + (7.03 + 2.91i)T + (28.9 + 28.9i)T^{2}
43 1+(2.782.78i)T43iT2 1 + (2.78 - 2.78i)T - 43iT^{2}
47 1+9.54iT47T2 1 + 9.54iT - 47T^{2}
53 1+(2.21+2.21i)T+53iT2 1 + (2.21 + 2.21i)T + 53iT^{2}
59 1+(1.951.95i)T59iT2 1 + (1.95 - 1.95i)T - 59iT^{2}
61 1+(0.440+0.182i)T+(43.1+43.1i)T2 1 + (0.440 + 0.182i)T + (43.1 + 43.1i)T^{2}
67 1+4.33T+67T2 1 + 4.33T + 67T^{2}
71 1+(0.7881.90i)T+(50.2+50.2i)T2 1 + (-0.788 - 1.90i)T + (-50.2 + 50.2i)T^{2}
73 1+(0.971+0.402i)T+(51.651.6i)T2 1 + (-0.971 + 0.402i)T + (51.6 - 51.6i)T^{2}
79 1+(4.8511.7i)T+(55.855.8i)T2 1 + (4.85 - 11.7i)T + (-55.8 - 55.8i)T^{2}
83 1+(0.666+0.666i)T+83iT2 1 + (0.666 + 0.666i)T + 83iT^{2}
89 1+3.51iT89T2 1 + 3.51iT - 89T^{2}
97 1+(2.661.10i)T+(68.568.5i)T2 1 + (2.66 - 1.10i)T + (68.5 - 68.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.535222226919080768547267417827, −8.438080380934797369749124151131, −7.63161136128615561258958744252, −6.98846097320724757836248566861, −5.80822986207345468057301404839, −5.27952271847988957921678069443, −3.82735661817537604550586473918, −3.24485196523131937069218728581, −1.80202373146773350172865268312, −0.05718743257844003992543604137, 1.87644378047934720040101358116, 2.96825939437664641426028244298, 4.12504563291512671957755401355, 4.91097384708059495257024600678, 6.18605430110380418276522144542, 6.67197043006146292225290878652, 7.61017030431864684126486436354, 8.712054211757516953428113995209, 9.249791287085917028317828069840, 9.949068967962198841350963388478

Graph of the ZZ-function along the critical line