L(s) = 1 | + (−0.194 + 0.0804i)5-s + (−1.76 − 0.730i)7-s + (−0.356 + 0.861i)11-s − 5.90i·13-s + (−4.07 + 0.626i)17-s + (3.51 + 3.51i)19-s + (−1.71 + 4.14i)23-s + (−3.50 + 3.50i)25-s + (−6.46 + 2.67i)29-s + (−1.31 − 3.17i)31-s + 0.401·35-s + (−1.21 − 2.94i)37-s + (−7.03 − 2.91i)41-s + (−2.78 + 2.78i)43-s − 9.54i·47-s + ⋯ |
L(s) = 1 | + (−0.0869 + 0.0359i)5-s + (−0.666 − 0.276i)7-s + (−0.107 + 0.259i)11-s − 1.63i·13-s + (−0.988 + 0.151i)17-s + (0.807 + 0.807i)19-s + (−0.357 + 0.864i)23-s + (−0.700 + 0.700i)25-s + (−1.20 + 0.497i)29-s + (−0.235 − 0.569i)31-s + 0.0678·35-s + (−0.200 − 0.484i)37-s + (−1.09 − 0.454i)41-s + (−0.424 + 0.424i)43-s − 1.39i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0765i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0765i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1440610403\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1440610403\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (4.07 - 0.626i)T \) |
good | 5 | \( 1 + (0.194 - 0.0804i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (1.76 + 0.730i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (0.356 - 0.861i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 5.90iT - 13T^{2} \) |
| 19 | \( 1 + (-3.51 - 3.51i)T + 19iT^{2} \) |
| 23 | \( 1 + (1.71 - 4.14i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (6.46 - 2.67i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (1.31 + 3.17i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (1.21 + 2.94i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (7.03 + 2.91i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (2.78 - 2.78i)T - 43iT^{2} \) |
| 47 | \( 1 + 9.54iT - 47T^{2} \) |
| 53 | \( 1 + (2.21 + 2.21i)T + 53iT^{2} \) |
| 59 | \( 1 + (1.95 - 1.95i)T - 59iT^{2} \) |
| 61 | \( 1 + (0.440 + 0.182i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 4.33T + 67T^{2} \) |
| 71 | \( 1 + (-0.788 - 1.90i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-0.971 + 0.402i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (4.85 - 11.7i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (0.666 + 0.666i)T + 83iT^{2} \) |
| 89 | \( 1 + 3.51iT - 89T^{2} \) |
| 97 | \( 1 + (2.66 - 1.10i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.535222226919080768547267417827, −8.438080380934797369749124151131, −7.63161136128615561258958744252, −6.98846097320724757836248566861, −5.80822986207345468057301404839, −5.27952271847988957921678069443, −3.82735661817537604550586473918, −3.24485196523131937069218728581, −1.80202373146773350172865268312, −0.05718743257844003992543604137,
1.87644378047934720040101358116, 2.96825939437664641426028244298, 4.12504563291512671957755401355, 4.91097384708059495257024600678, 6.18605430110380418276522144542, 6.67197043006146292225290878652, 7.61017030431864684126486436354, 8.712054211757516953428113995209, 9.249791287085917028317828069840, 9.949068967962198841350963388478