L(s) = 1 | + (0.429 − 0.177i)5-s + (−1.62 − 0.671i)7-s + (−1.79 + 4.33i)11-s − 0.542i·13-s + (2.66 + 3.14i)17-s + (−5.16 − 5.16i)19-s + (−1.25 + 3.03i)23-s + (−3.38 + 3.38i)25-s + (−1.78 + 0.740i)29-s + (0.712 + 1.71i)31-s − 0.815·35-s + (1.30 + 3.16i)37-s + (−2.06 − 0.854i)41-s + (−2.49 + 2.49i)43-s + 10.6i·47-s + ⋯ |
L(s) = 1 | + (0.192 − 0.0795i)5-s + (−0.612 − 0.253i)7-s + (−0.541 + 1.30i)11-s − 0.150i·13-s + (0.646 + 0.763i)17-s + (−1.18 − 1.18i)19-s + (−0.261 + 0.632i)23-s + (−0.676 + 0.676i)25-s + (−0.331 + 0.137i)29-s + (0.127 + 0.308i)31-s − 0.137·35-s + (0.215 + 0.519i)37-s + (−0.322 − 0.133i)41-s + (−0.380 + 0.380i)43-s + 1.55i·47-s + ⋯ |
Λ(s)=(=(1224s/2ΓC(s)L(s)(−0.586−0.810i)Λ(2−s)
Λ(s)=(=(1224s/2ΓC(s+1/2)L(s)(−0.586−0.810i)Λ(1−s)
Degree: |
2 |
Conductor: |
1224
= 23⋅32⋅17
|
Sign: |
−0.586−0.810i
|
Analytic conductor: |
9.77368 |
Root analytic conductor: |
3.12629 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1224(865,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1224, ( :1/2), −0.586−0.810i)
|
Particular Values
L(1) |
≈ |
0.7303701495 |
L(21) |
≈ |
0.7303701495 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1+(−2.66−3.14i)T |
good | 5 | 1+(−0.429+0.177i)T+(3.53−3.53i)T2 |
| 7 | 1+(1.62+0.671i)T+(4.94+4.94i)T2 |
| 11 | 1+(1.79−4.33i)T+(−7.77−7.77i)T2 |
| 13 | 1+0.542iT−13T2 |
| 19 | 1+(5.16+5.16i)T+19iT2 |
| 23 | 1+(1.25−3.03i)T+(−16.2−16.2i)T2 |
| 29 | 1+(1.78−0.740i)T+(20.5−20.5i)T2 |
| 31 | 1+(−0.712−1.71i)T+(−21.9+21.9i)T2 |
| 37 | 1+(−1.30−3.16i)T+(−26.1+26.1i)T2 |
| 41 | 1+(2.06+0.854i)T+(28.9+28.9i)T2 |
| 43 | 1+(2.49−2.49i)T−43iT2 |
| 47 | 1−10.6iT−47T2 |
| 53 | 1+(0.634+0.634i)T+53iT2 |
| 59 | 1+(7.78−7.78i)T−59iT2 |
| 61 | 1+(−13.1−5.46i)T+(43.1+43.1i)T2 |
| 67 | 1−5.80T+67T2 |
| 71 | 1+(2.87+6.93i)T+(−50.2+50.2i)T2 |
| 73 | 1+(2.69−1.11i)T+(51.6−51.6i)T2 |
| 79 | 1+(2.62−6.34i)T+(−55.8−55.8i)T2 |
| 83 | 1+(7.82+7.82i)T+83iT2 |
| 89 | 1−1.76iT−89T2 |
| 97 | 1+(−0.944+0.391i)T+(68.5−68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.946695352508077507931678391767, −9.389321901238536315852596887891, −8.348995403391411149002759494983, −7.49043635273956056888315361327, −6.76500548394779932830746508292, −5.84802993947672454217524106706, −4.87316366538164713534748014432, −3.96897709026415352783582547793, −2.81317802999086942661496456404, −1.64862031927124300177314143102,
0.29334651708571257071770460862, 2.12358988679464247621796434964, 3.17370854083185211883810737504, 4.08618516147699596862881068783, 5.42798923346110158153131900290, 6.02802633777685760087493500953, 6.81005061119282871409920403328, 8.060305758680979032881262634463, 8.454339436039799345119601006741, 9.570237744007696943269978106373