L(s) = 1 | + (0.429 − 0.177i)5-s + (−1.62 − 0.671i)7-s + (−1.79 + 4.33i)11-s − 0.542i·13-s + (2.66 + 3.14i)17-s + (−5.16 − 5.16i)19-s + (−1.25 + 3.03i)23-s + (−3.38 + 3.38i)25-s + (−1.78 + 0.740i)29-s + (0.712 + 1.71i)31-s − 0.815·35-s + (1.30 + 3.16i)37-s + (−2.06 − 0.854i)41-s + (−2.49 + 2.49i)43-s + 10.6i·47-s + ⋯ |
L(s) = 1 | + (0.192 − 0.0795i)5-s + (−0.612 − 0.253i)7-s + (−0.541 + 1.30i)11-s − 0.150i·13-s + (0.646 + 0.763i)17-s + (−1.18 − 1.18i)19-s + (−0.261 + 0.632i)23-s + (−0.676 + 0.676i)25-s + (−0.331 + 0.137i)29-s + (0.127 + 0.308i)31-s − 0.137·35-s + (0.215 + 0.519i)37-s + (−0.322 − 0.133i)41-s + (−0.380 + 0.380i)43-s + 1.55i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.586 - 0.810i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.586 - 0.810i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7303701495\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7303701495\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (-2.66 - 3.14i)T \) |
good | 5 | \( 1 + (-0.429 + 0.177i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (1.62 + 0.671i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (1.79 - 4.33i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 0.542iT - 13T^{2} \) |
| 19 | \( 1 + (5.16 + 5.16i)T + 19iT^{2} \) |
| 23 | \( 1 + (1.25 - 3.03i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (1.78 - 0.740i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-0.712 - 1.71i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-1.30 - 3.16i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (2.06 + 0.854i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (2.49 - 2.49i)T - 43iT^{2} \) |
| 47 | \( 1 - 10.6iT - 47T^{2} \) |
| 53 | \( 1 + (0.634 + 0.634i)T + 53iT^{2} \) |
| 59 | \( 1 + (7.78 - 7.78i)T - 59iT^{2} \) |
| 61 | \( 1 + (-13.1 - 5.46i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 5.80T + 67T^{2} \) |
| 71 | \( 1 + (2.87 + 6.93i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (2.69 - 1.11i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (2.62 - 6.34i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (7.82 + 7.82i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.76iT - 89T^{2} \) |
| 97 | \( 1 + (-0.944 + 0.391i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.946695352508077507931678391767, −9.389321901238536315852596887891, −8.348995403391411149002759494983, −7.49043635273956056888315361327, −6.76500548394779932830746508292, −5.84802993947672454217524106706, −4.87316366538164713534748014432, −3.96897709026415352783582547793, −2.81317802999086942661496456404, −1.64862031927124300177314143102,
0.29334651708571257071770460862, 2.12358988679464247621796434964, 3.17370854083185211883810737504, 4.08618516147699596862881068783, 5.42798923346110158153131900290, 6.02802633777685760087493500953, 6.81005061119282871409920403328, 8.060305758680979032881262634463, 8.454339436039799345119601006741, 9.570237744007696943269978106373