Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1224,2,Mod(145,1224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1224.145");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1224.bq (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 408) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145.1 |
|
0 | 0 | 0 | −1.19125 | + | 2.87594i | 0 | −0.497533 | − | 1.20115i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
145.2 | 0 | 0 | 0 | −1.10335 | + | 2.66372i | 0 | 1.25868 | + | 3.03872i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
145.3 | 0 | 0 | 0 | 0.325635 | − | 0.786153i | 0 | 0.663444 | + | 1.60170i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
145.4 | 0 | 0 | 0 | 0.554753 | − | 1.33929i | 0 | −0.0103761 | − | 0.0250502i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.1 | 0 | 0 | 0 | −2.39179 | − | 0.990712i | 0 | 2.00524 | − | 0.830597i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.2 | 0 | 0 | 0 | 0.429478 | + | 0.177896i | 0 | −1.62064 | + | 0.671292i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.3 | 0 | 0 | 0 | 0.868455 | + | 0.359726i | 0 | −4.01891 | + | 1.66469i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
433.4 | 0 | 0 | 0 | 2.50807 | + | 1.03888i | 0 | 2.22010 | − | 0.919595i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
865.1 | 0 | 0 | 0 | −2.39179 | + | 0.990712i | 0 | 2.00524 | + | 0.830597i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
865.2 | 0 | 0 | 0 | 0.429478 | − | 0.177896i | 0 | −1.62064 | − | 0.671292i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
865.3 | 0 | 0 | 0 | 0.868455 | − | 0.359726i | 0 | −4.01891 | − | 1.66469i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
865.4 | 0 | 0 | 0 | 2.50807 | − | 1.03888i | 0 | 2.22010 | + | 0.919595i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
937.1 | 0 | 0 | 0 | −1.19125 | − | 2.87594i | 0 | −0.497533 | + | 1.20115i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
937.2 | 0 | 0 | 0 | −1.10335 | − | 2.66372i | 0 | 1.25868 | − | 3.03872i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
937.3 | 0 | 0 | 0 | 0.325635 | + | 0.786153i | 0 | 0.663444 | − | 1.60170i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
937.4 | 0 | 0 | 0 | 0.554753 | + | 1.33929i | 0 | −0.0103761 | + | 0.0250502i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1224.2.bq.e | 16 | |
3.b | odd | 2 | 1 | 408.2.ba.a | ✓ | 16 | |
12.b | even | 2 | 1 | 816.2.bq.f | 16 | ||
17.d | even | 8 | 1 | inner | 1224.2.bq.e | 16 | |
51.g | odd | 8 | 1 | 408.2.ba.a | ✓ | 16 | |
51.i | even | 16 | 1 | 6936.2.a.bl | 8 | ||
51.i | even | 16 | 1 | 6936.2.a.bo | 8 | ||
204.p | even | 8 | 1 | 816.2.bq.f | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
408.2.ba.a | ✓ | 16 | 3.b | odd | 2 | 1 | |
408.2.ba.a | ✓ | 16 | 51.g | odd | 8 | 1 | |
816.2.bq.f | 16 | 12.b | even | 2 | 1 | ||
816.2.bq.f | 16 | 204.p | even | 8 | 1 | ||
1224.2.bq.e | 16 | 1.a | even | 1 | 1 | trivial | |
1224.2.bq.e | 16 | 17.d | even | 8 | 1 | inner | |
6936.2.a.bl | 8 | 51.i | even | 16 | 1 | ||
6936.2.a.bo | 8 | 51.i | even | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .