gp: [N,k,chi] = [1224,2,Mod(145,1224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1224.145");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,0,0,0,0,0,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 + 36 x 14 + 466 x 12 + 2956 x 10 + 10049 x 8 + 18032 x 6 + 14800 x 4 + 3200 x 2 + 64 x^{16} + 36x^{14} + 466x^{12} + 2956x^{10} + 10049x^{8} + 18032x^{6} + 14800x^{4} + 3200x^{2} + 64 x 1 6 + 3 6 x 1 4 + 4 6 6 x 1 2 + 2 9 5 6 x 1 0 + 1 0 0 4 9 x 8 + 1 8 0 3 2 x 6 + 1 4 8 0 0 x 4 + 3 2 0 0 x 2 + 6 4
x^16 + 36*x^14 + 466*x^12 + 2956*x^10 + 10049*x^8 + 18032*x^6 + 14800*x^4 + 3200*x^2 + 64
:
β 1 \beta_{1} β 1 = = =
( 2 ν 15 + 12 ν 14 + 51 ν 13 + 393 ν 12 + 264 ν 11 + 4324 ν 10 − 1058 ν 9 + ⋯ − 2168 ) / 1088 ( 2 \nu^{15} + 12 \nu^{14} + 51 \nu^{13} + 393 \nu^{12} + 264 \nu^{11} + 4324 \nu^{10} - 1058 \nu^{9} + \cdots - 2168 ) / 1088 ( 2 ν 1 5 + 1 2 ν 1 4 + 5 1 ν 1 3 + 3 9 3 ν 1 2 + 2 6 4 ν 1 1 + 4 3 2 4 ν 1 0 − 1 0 5 8 ν 9 + ⋯ − 2 1 6 8 ) / 1 0 8 8
(2*v^15 + 12*v^14 + 51*v^13 + 393*v^12 + 264*v^11 + 4324*v^10 - 1058*v^9 + 21690*v^8 - 12266*v^7 + 52488*v^6 - 34685*v^5 + 54073*v^4 - 35752*v^3 + 11384*v^2 - 9544*v - 2168) / 1088
β 2 \beta_{2} β 2 = = =
( 2 ν 15 − 12 ν 14 + 51 ν 13 − 393 ν 12 + 264 ν 11 − 4324 ν 10 − 1058 ν 9 + ⋯ + 1080 ) / 1088 ( 2 \nu^{15} - 12 \nu^{14} + 51 \nu^{13} - 393 \nu^{12} + 264 \nu^{11} - 4324 \nu^{10} - 1058 \nu^{9} + \cdots + 1080 ) / 1088 ( 2 ν 1 5 − 1 2 ν 1 4 + 5 1 ν 1 3 − 3 9 3 ν 1 2 + 2 6 4 ν 1 1 − 4 3 2 4 ν 1 0 − 1 0 5 8 ν 9 + ⋯ + 1 0 8 0 ) / 1 0 8 8
(2*v^15 - 12*v^14 + 51*v^13 - 393*v^12 + 264*v^11 - 4324*v^10 - 1058*v^9 - 21690*v^8 - 12266*v^7 - 52488*v^6 - 34685*v^5 - 54073*v^4 - 35752*v^3 - 11384*v^2 - 9544*v + 1080) / 1088
β 3 \beta_{3} β 3 = = =
( − 23 ν 15 − 776 ν 13 − 9062 ν 11 − 50684 ν 9 − 150727 ν 7 − 238604 ν 5 + ⋯ − 28576 ν ) / 2176 ( - 23 \nu^{15} - 776 \nu^{13} - 9062 \nu^{11} - 50684 \nu^{9} - 150727 \nu^{7} - 238604 \nu^{5} + \cdots - 28576 \nu ) / 2176 ( − 2 3 ν 1 5 − 7 7 6 ν 1 3 − 9 0 6 2 ν 1 1 − 5 0 6 8 4 ν 9 − 1 5 0 7 2 7 ν 7 − 2 3 8 6 0 4 ν 5 + ⋯ − 2 8 5 7 6 ν ) / 2 1 7 6
(-23*v^15 - 776*v^13 - 9062*v^11 - 50684*v^9 - 150727*v^7 - 238604*v^5 - 175352*v^3 - 28576*v) / 2176
β 4 \beta_{4} β 4 = = =
( 47 ν 15 + 1492 ν 13 + 15446 ν 11 + 69732 ν 9 + 137983 ν 7 + 75336 ν 5 + ⋯ − 30720 ν ) / 4352 ( 47 \nu^{15} + 1492 \nu^{13} + 15446 \nu^{11} + 69732 \nu^{9} + 137983 \nu^{7} + 75336 \nu^{5} + \cdots - 30720 \nu ) / 4352 ( 4 7 ν 1 5 + 1 4 9 2 ν 1 3 + 1 5 4 4 6 ν 1 1 + 6 9 7 3 2 ν 9 + 1 3 7 9 8 3 ν 7 + 7 5 3 3 6 ν 5 + ⋯ − 3 0 7 2 0 ν ) / 4 3 5 2
(47*v^15 + 1492*v^13 + 15446*v^11 + 69732*v^9 + 137983*v^7 + 75336*v^5 - 67080*v^3 - 30720*v) / 4352
β 5 \beta_{5} β 5 = = =
( − 39 ν 14 − 1288 ν 12 − 14390 ν 10 − 73964 ν 8 − 187047 ν 6 − 214076 ν 4 + ⋯ − 7456 ) / 2176 ( - 39 \nu^{14} - 1288 \nu^{12} - 14390 \nu^{10} - 73964 \nu^{8} - 187047 \nu^{6} - 214076 \nu^{4} + \cdots - 7456 ) / 2176 ( − 3 9 ν 1 4 − 1 2 8 8 ν 1 2 − 1 4 3 9 0 ν 1 0 − 7 3 9 6 4 ν 8 − 1 8 7 0 4 7 ν 6 − 2 1 4 0 7 6 ν 4 + ⋯ − 7 4 5 6 ) / 2 1 7 6
(-39*v^14 - 1288*v^12 - 14390*v^10 - 73964*v^8 - 187047*v^6 - 214076*v^4 - 75928*v^2 - 7456) / 2176
β 6 \beta_{6} β 6 = = =
( 15 ν 15 + 124 ν 14 + 454 ν 13 + 4032 ν 12 + 4174 ν 11 + 43768 ν 10 + ⋯ + 6016 ) / 4352 ( 15 \nu^{15} + 124 \nu^{14} + 454 \nu^{13} + 4032 \nu^{12} + 4174 \nu^{11} + 43768 \nu^{10} + \cdots + 6016 ) / 4352 ( 1 5 ν 1 5 + 1 2 4 ν 1 4 + 4 5 4 ν 1 3 + 4 0 3 2 ν 1 2 + 4 1 7 4 ν 1 1 + 4 3 7 6 8 ν 1 0 + ⋯ + 6 0 1 6 ) / 4 3 5 2
(15*v^15 + 124*v^14 + 454*v^13 + 4032*v^12 + 4174*v^11 + 43768*v^10 + 13464*v^9 + 215056*v^8 - 1993*v^7 + 507420*v^6 - 87270*v^5 + 518960*v^4 - 126360*v^3 + 143520*v^2 - 23408*v + 6016) / 4352
β 7 \beta_{7} β 7 = = =
( 15 ν 15 − 124 ν 14 + 454 ν 13 − 4032 ν 12 + 4174 ν 11 − 43768 ν 10 + ⋯ − 6016 ) / 4352 ( 15 \nu^{15} - 124 \nu^{14} + 454 \nu^{13} - 4032 \nu^{12} + 4174 \nu^{11} - 43768 \nu^{10} + \cdots - 6016 ) / 4352 ( 1 5 ν 1 5 − 1 2 4 ν 1 4 + 4 5 4 ν 1 3 − 4 0 3 2 ν 1 2 + 4 1 7 4 ν 1 1 − 4 3 7 6 8 ν 1 0 + ⋯ − 6 0 1 6 ) / 4 3 5 2
(15*v^15 - 124*v^14 + 454*v^13 - 4032*v^12 + 4174*v^11 - 43768*v^10 + 13464*v^9 - 215056*v^8 - 1993*v^7 - 507420*v^6 - 87270*v^5 - 518960*v^4 - 126360*v^3 - 143520*v^2 - 23408*v - 6016) / 4352
β 8 \beta_{8} β 8 = = =
( 29 ν 15 + 3 ν 14 + 957 ν 13 + 127 ν 12 + 10678 ν 11 + 1938 ν 10 + 54822 ν 9 + ⋯ + 1048 ) / 1088 ( 29 \nu^{15} + 3 \nu^{14} + 957 \nu^{13} + 127 \nu^{12} + 10678 \nu^{11} + 1938 \nu^{10} + 54822 \nu^{9} + \cdots + 1048 ) / 1088 ( 2 9 ν 1 5 + 3 ν 1 4 + 9 5 7 ν 1 3 + 1 2 7 ν 1 2 + 1 0 6 7 8 ν 1 1 + 1 9 3 8 ν 1 0 + 5 4 8 2 2 ν 9 + ⋯ + 1 0 4 8 ) / 1 0 8 8
(29*v^15 + 3*v^14 + 957*v^13 + 127*v^12 + 10678*v^11 + 1938*v^10 + 54822*v^9 + 13274*v^8 + 139121*v^7 + 42407*v^6 + 164425*v^5 + 57531*v^4 + 71632*v^3 + 21920*v^2 + 11048*v + 1048) / 1088
β 9 \beta_{9} β 9 = = =
( 35 ν 15 + 67 ν 14 + 1138 ν 13 + 2194 ν 12 + 12294 ν 11 + 24086 ν 10 + ⋯ − 1680 ) / 2176 ( 35 \nu^{15} + 67 \nu^{14} + 1138 \nu^{13} + 2194 \nu^{12} + 12294 \nu^{11} + 24086 \nu^{10} + \cdots - 1680 ) / 2176 ( 3 5 ν 1 5 + 6 7 ν 1 4 + 1 1 3 8 ν 1 3 + 2 1 9 4 ν 1 2 + 1 2 2 9 4 ν 1 1 + 2 4 0 8 6 ν 1 0 + ⋯ − 1 6 8 0 ) / 2 1 7 6
(35*v^15 + 67*v^14 + 1138*v^13 + 2194*v^12 + 12294*v^11 + 24086*v^10 + 58960*v^9 + 119744*v^8 + 127515*v^7 + 283851*v^6 + 90246*v^5 + 282326*v^4 - 32088*v^3 + 58472*v^2 - 8656*v - 1680) / 2176
β 10 \beta_{10} β 1 0 = = =
( − 29 ν 15 + 3 ν 14 − 957 ν 13 + 127 ν 12 − 10678 ν 11 + 1938 ν 10 + ⋯ + 1048 ) / 1088 ( - 29 \nu^{15} + 3 \nu^{14} - 957 \nu^{13} + 127 \nu^{12} - 10678 \nu^{11} + 1938 \nu^{10} + \cdots + 1048 ) / 1088 ( − 2 9 ν 1 5 + 3 ν 1 4 − 9 5 7 ν 1 3 + 1 2 7 ν 1 2 − 1 0 6 7 8 ν 1 1 + 1 9 3 8 ν 1 0 + ⋯ + 1 0 4 8 ) / 1 0 8 8
(-29*v^15 + 3*v^14 - 957*v^13 + 127*v^12 - 10678*v^11 + 1938*v^10 - 54822*v^9 + 13274*v^8 - 139121*v^7 + 42407*v^6 - 164425*v^5 + 57531*v^4 - 71632*v^3 + 21920*v^2 - 11048*v + 1048) / 1088
β 11 \beta_{11} β 1 1 = = =
( − 81 ν 15 − 123 ν 14 − 2770 ν 13 − 3952 ν 12 − 32850 ν 11 − 41918 ν 10 + ⋯ + 11680 ) / 4352 ( - 81 \nu^{15} - 123 \nu^{14} - 2770 \nu^{13} - 3952 \nu^{12} - 32850 \nu^{11} - 41918 \nu^{10} + \cdots + 11680 ) / 4352 ( − 8 1 ν 1 5 − 1 2 3 ν 1 4 − 2 7 7 0 ν 1 3 − 3 9 5 2 ν 1 2 − 3 2 8 5 0 ν 1 1 − 4 1 9 1 8 ν 1 0 + ⋯ + 1 1 6 8 0 ) / 4 3 5 2
(-81*v^15 - 123*v^14 - 2770*v^13 - 3952*v^12 - 32850*v^11 - 41918*v^10 - 183512*v^9 - 198028*v^8 - 521385*v^7 - 435451*v^6 - 723262*v^5 - 378004*v^4 - 404024*v^3 - 30904*v^2 - 54576*v + 11680) / 4352
β 12 \beta_{12} β 1 2 = = =
( − 35 ν 15 + 67 ν 14 − 1138 ν 13 + 2194 ν 12 − 12294 ν 11 + 24086 ν 10 + ⋯ − 1680 ) / 2176 ( - 35 \nu^{15} + 67 \nu^{14} - 1138 \nu^{13} + 2194 \nu^{12} - 12294 \nu^{11} + 24086 \nu^{10} + \cdots - 1680 ) / 2176 ( − 3 5 ν 1 5 + 6 7 ν 1 4 − 1 1 3 8 ν 1 3 + 2 1 9 4 ν 1 2 − 1 2 2 9 4 ν 1 1 + 2 4 0 8 6 ν 1 0 + ⋯ − 1 6 8 0 ) / 2 1 7 6
(-35*v^15 + 67*v^14 - 1138*v^13 + 2194*v^12 - 12294*v^11 + 24086*v^10 - 58960*v^9 + 119744*v^8 - 127515*v^7 + 283851*v^6 - 90246*v^5 + 282326*v^4 + 32088*v^3 + 58472*v^2 + 8656*v - 1680) / 2176
β 13 \beta_{13} β 1 3 = = =
( − 81 ν 15 + 123 ν 14 − 2770 ν 13 + 3952 ν 12 − 32850 ν 11 + 41918 ν 10 + ⋯ − 11680 ) / 4352 ( - 81 \nu^{15} + 123 \nu^{14} - 2770 \nu^{13} + 3952 \nu^{12} - 32850 \nu^{11} + 41918 \nu^{10} + \cdots - 11680 ) / 4352 ( − 8 1 ν 1 5 + 1 2 3 ν 1 4 − 2 7 7 0 ν 1 3 + 3 9 5 2 ν 1 2 − 3 2 8 5 0 ν 1 1 + 4 1 9 1 8 ν 1 0 + ⋯ − 1 1 6 8 0 ) / 4 3 5 2
(-81*v^15 + 123*v^14 - 2770*v^13 + 3952*v^12 - 32850*v^11 + 41918*v^10 - 183512*v^9 + 198028*v^8 - 521385*v^7 + 435451*v^6 - 723262*v^5 + 378004*v^4 - 404024*v^3 + 30904*v^2 - 54576*v - 11680) / 4352
β 14 \beta_{14} β 1 4 = = =
( − 22 ν 15 + 245 ν 14 − 770 ν 13 + 8104 ν 12 − 9652 ν 11 + 90498 ν 10 + ⋯ + 352 ) / 4352 ( - 22 \nu^{15} + 245 \nu^{14} - 770 \nu^{13} + 8104 \nu^{12} - 9652 \nu^{11} + 90498 \nu^{10} + \cdots + 352 ) / 4352 ( − 2 2 ν 1 5 + 2 4 5 ν 1 4 − 7 7 0 ν 1 3 + 8 1 0 4 ν 1 2 − 9 6 5 2 ν 1 1 + 9 0 4 9 8 ν 1 0 + ⋯ + 3 5 2 ) / 4 3 5 2
(-22*v^15 + 245*v^14 - 770*v^13 + 8104*v^12 - 9652*v^11 + 90498*v^10 - 60684*v^9 + 460036*v^8 - 213774*v^7 + 1119125*v^6 - 417802*v^5 + 1143652*v^4 - 383424*v^3 + 242952*v^2 - 81104*v + 352) / 4352
β 15 \beta_{15} β 1 5 = = =
( − 22 ν 15 − 245 ν 14 − 770 ν 13 − 8104 ν 12 − 9652 ν 11 − 90498 ν 10 + ⋯ − 352 ) / 4352 ( - 22 \nu^{15} - 245 \nu^{14} - 770 \nu^{13} - 8104 \nu^{12} - 9652 \nu^{11} - 90498 \nu^{10} + \cdots - 352 ) / 4352 ( − 2 2 ν 1 5 − 2 4 5 ν 1 4 − 7 7 0 ν 1 3 − 8 1 0 4 ν 1 2 − 9 6 5 2 ν 1 1 − 9 0 4 9 8 ν 1 0 + ⋯ − 3 5 2 ) / 4 3 5 2
(-22*v^15 - 245*v^14 - 770*v^13 - 8104*v^12 - 9652*v^11 - 90498*v^10 - 60684*v^9 - 460036*v^8 - 213774*v^7 - 1119125*v^6 - 417802*v^5 - 1143652*v^4 - 383424*v^3 - 242952*v^2 - 81104*v - 352) / 4352
ν \nu ν = = =
( β 12 − β 10 − β 9 + β 8 + 2 β 3 ) / 2 ( \beta_{12} - \beta_{10} - \beta_{9} + \beta_{8} + 2\beta_{3} ) / 2 ( β 1 2 − β 1 0 − β 9 + β 8 + 2 β 3 ) / 2
(b12 - b10 - b9 + b8 + 2*b3) / 2
ν 2 \nu^{2} ν 2 = = =
− β 13 + 2 β 12 + β 11 − β 10 + 2 β 9 − β 8 + β 7 − β 6 + ⋯ − 4 - \beta_{13} + 2 \beta_{12} + \beta_{11} - \beta_{10} + 2 \beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} + \cdots - 4 − β 1 3 + 2 β 1 2 + β 1 1 − β 1 0 + 2 β 9 − β 8 + β 7 − β 6 + ⋯ − 4
-b13 + 2*b12 + b11 - b10 + 2*b9 - b8 + b7 - b6 - b5 + b2 - b1 - 4
ν 3 \nu^{3} ν 3 = = =
( − 6 β 15 − 6 β 14 − 2 β 13 − 11 β 12 − 2 β 11 + 15 β 10 + 11 β 9 + ⋯ − 6 ) / 2 ( - 6 \beta_{15} - 6 \beta_{14} - 2 \beta_{13} - 11 \beta_{12} - 2 \beta_{11} + 15 \beta_{10} + 11 \beta_{9} + \cdots - 6 ) / 2 ( − 6 β 1 5 − 6 β 1 4 − 2 β 1 3 − 1 1 β 1 2 − 2 β 1 1 + 1 5 β 1 0 + 1 1 β 9 + ⋯ − 6 ) / 2
(-6*b15 - 6*b14 - 2*b13 - 11*b12 - 2*b11 + 15*b10 + 11*b9 - 15*b8 + 8*b7 + 8*b6 + 12*b4 - 14*b3 - 6*b2 - 6*b1 - 6) / 2
ν 4 \nu^{4} ν 4 = = =
− 5 β 15 + 5 β 14 + 16 β 13 − 44 β 12 − 16 β 11 + 14 β 10 + ⋯ + 39 - 5 \beta_{15} + 5 \beta_{14} + 16 \beta_{13} - 44 \beta_{12} - 16 \beta_{11} + 14 \beta_{10} + \cdots + 39 − 5 β 1 5 + 5 β 1 4 + 1 6 β 1 3 − 4 4 β 1 2 − 1 6 β 1 1 + 1 4 β 1 0 + ⋯ + 3 9
-5*b15 + 5*b14 + 16*b13 - 44*b12 - 16*b11 + 14*b10 - 44*b9 + 14*b8 - 21*b7 + 21*b6 + 19*b5 - 14*b2 + 14*b1 + 39
ν 5 \nu^{5} ν 5 = = =
( 126 β 15 + 126 β 14 + 50 β 13 + 167 β 12 + 50 β 11 − 257 β 10 + ⋯ + 108 ) / 2 ( 126 \beta_{15} + 126 \beta_{14} + 50 \beta_{13} + 167 \beta_{12} + 50 \beta_{11} - 257 \beta_{10} + \cdots + 108 ) / 2 ( 1 2 6 β 1 5 + 1 2 6 β 1 4 + 5 0 β 1 3 + 1 6 7 β 1 2 + 5 0 β 1 1 − 2 5 7 β 1 0 + ⋯ + 1 0 8 ) / 2
(126*b15 + 126*b14 + 50*b13 + 167*b12 + 50*b11 - 257*b10 - 167*b9 + 257*b8 - 168*b7 - 168*b6 - 244*b4 + 170*b3 + 108*b2 + 108*b1 + 108) / 2
ν 6 \nu^{6} ν 6 = = =
108 β 15 − 108 β 14 − 275 β 13 + 796 β 12 + 275 β 11 − 225 β 10 + ⋯ − 532 108 \beta_{15} - 108 \beta_{14} - 275 \beta_{13} + 796 \beta_{12} + 275 \beta_{11} - 225 \beta_{10} + \cdots - 532 1 0 8 β 1 5 − 1 0 8 β 1 4 − 2 7 5 β 1 3 + 7 9 6 β 1 2 + 2 7 5 β 1 1 − 2 2 5 β 1 0 + ⋯ − 5 3 2
108*b15 - 108*b14 - 275*b13 + 796*b12 + 275*b11 - 225*b10 + 796*b9 - 225*b8 + 365*b7 - 365*b6 - 315*b5 + 223*b2 - 223*b1 - 532
ν 7 \nu^{7} ν 7 = = =
( − 2258 β 15 − 2258 β 14 − 926 β 13 − 2785 β 12 − 926 β 11 + 4393 β 10 + ⋯ − 1806 ) / 2 ( - 2258 \beta_{15} - 2258 \beta_{14} - 926 \beta_{13} - 2785 \beta_{12} - 926 \beta_{11} + 4393 \beta_{10} + \cdots - 1806 ) / 2 ( − 2 2 5 8 β 1 5 − 2 2 5 8 β 1 4 − 9 2 6 β 1 3 − 2 7 8 5 β 1 2 − 9 2 6 β 1 1 + 4 3 9 3 β 1 0 + ⋯ − 1 8 0 6 ) / 2
(-2258*b15 - 2258*b14 - 926*b13 - 2785*b12 - 926*b11 + 4393*b10 + 2785*b9 - 4393*b8 + 2976*b7 + 2976*b6 + 4244*b4 - 2610*b3 - 1806*b2 - 1806*b1 - 1806) / 2
ν 8 \nu^{8} ν 8 = = =
− 1933 β 15 + 1933 β 14 + 4718 β 13 − 13740 β 12 − 4718 β 11 + ⋯ + 8355 - 1933 \beta_{15} + 1933 \beta_{14} + 4718 \beta_{13} - 13740 \beta_{12} - 4718 \beta_{11} + \cdots + 8355 − 1 9 3 3 β 1 5 + 1 9 3 3 β 1 4 + 4 7 1 8 β 1 3 − 1 3 7 4 0 β 1 2 − 4 7 1 8 β 1 1 + ⋯ + 8 3 5 5
-1933*b15 + 1933*b14 + 4718*b13 - 13740*b12 - 4718*b11 + 3772*b10 - 13740*b9 + 3772*b8 - 6199*b7 + 6199*b6 + 5233*b5 - 3696*b2 + 3696*b1 + 8355
ν 9 \nu^{9} ν 9 = = =
( 38890 β 15 + 38890 β 14 + 16070 β 13 + 47145 β 12 + 16070 β 11 + ⋯ + 30256 ) / 2 ( 38890 \beta_{15} + 38890 \beta_{14} + 16070 \beta_{13} + 47145 \beta_{12} + 16070 \beta_{11} + \cdots + 30256 ) / 2 ( 3 8 8 9 0 β 1 5 + 3 8 8 9 0 β 1 4 + 1 6 0 7 0 β 1 3 + 4 7 1 4 5 β 1 2 + 1 6 0 7 0 β 1 1 + ⋯ + 3 0 2 5 6 ) / 2
(38890*b15 + 38890*b14 + 16070*b13 + 47145*b12 + 16070*b11 - 74667*b10 - 47145*b9 + 74667*b8 - 50872*b7 - 50872*b6 - 72108*b4 + 42974*b3 + 30256*b2 + 30256*b1 + 30256) / 2
ν 10 \nu^{10} ν 1 0 = = =
33206 β 15 − 33206 β 14 − 80351 β 13 + 233944 β 12 + 80351 β 11 + ⋯ − 137862 33206 \beta_{15} - 33206 \beta_{14} - 80351 \beta_{13} + 233944 \beta_{12} + 80351 \beta_{11} + \cdots - 137862 3 3 2 0 6 β 1 5 − 3 3 2 0 6 β 1 4 − 8 0 3 5 1 β 1 3 + 2 3 3 9 4 4 β 1 2 + 8 0 3 5 1 β 1 1 + ⋯ − 1 3 7 8 6 2
33206*b15 - 33206*b14 - 80351*b13 + 233944*b12 + 80351*b11 - 63753*b10 + 233944*b9 - 63753*b8 + 104923*b7 - 104923*b6 - 87797*b5 + 62051*b2 - 62051*b1 - 137862
ν 11 \nu^{11} ν 1 1 = = =
( − 661806 β 15 − 661806 β 14 − 273970 β 13 − 798691 β 12 − 273970 β 11 + ⋯ − 509542 ) / 2 ( - 661806 \beta_{15} - 661806 \beta_{14} - 273970 \beta_{13} - 798691 \beta_{12} - 273970 \beta_{11} + \cdots - 509542 ) / 2 ( − 6 6 1 8 0 6 β 1 5 − 6 6 1 8 0 6 β 1 4 − 2 7 3 9 7 0 β 1 3 − 7 9 8 6 9 1 β 1 2 − 2 7 3 9 7 0 β 1 1 + ⋯ − 5 0 9 5 4 2 ) / 2
(-661806*b15 - 661806*b14 - 273970*b13 - 798691*b12 - 273970*b11 + 1265463*b10 + 798691*b9 - 1265463*b8 + 862576*b7 + 862576*b6 + 1220572*b4 - 721230*b3 - 509542*b2 - 509542*b1 - 509542) / 2
ν 12 \nu^{12} ν 1 2 = = =
− 564289 β 15 + 564289 β 14 + 1362980 β 13 − 3966012 β 12 − 1362980 β 11 + ⋯ + 2312571 - 564289 \beta_{15} + 564289 \beta_{14} + 1362980 \beta_{13} - 3966012 \beta_{12} - 1362980 \beta_{11} + \cdots + 2312571 − 5 6 4 2 8 9 β 1 5 + 5 6 4 2 8 9 β 1 4 + 1 3 6 2 9 8 0 β 1 3 − 3 9 6 6 0 1 2 β 1 2 − 1 3 6 2 9 8 0 β 1 1 + ⋯ + 2 3 1 2 5 7 1
-564289*b15 + 564289*b14 + 1362980*b13 - 3966012*b12 - 1362980*b11 + 1078714*b10 - 3966012*b9 + 1078714*b8 - 1775005*b7 + 1775005*b6 + 1480443*b5 - 1046674*b2 + 1046674*b1 + 2312571
ν 13 \nu^{13} ν 1 3 = = =
( 11218030 β 15 + 11218030 β 14 + 4646018 β 13 + 13521263 β 12 + 4646018 β 11 + ⋯ + 8604244 ) / 2 ( 11218030 \beta_{15} + 11218030 \beta_{14} + 4646018 \beta_{13} + 13521263 \beta_{12} + 4646018 \beta_{11} + \cdots + 8604244 ) / 2 ( 1 1 2 1 8 0 3 0 β 1 5 + 1 1 2 1 8 0 3 0 β 1 4 + 4 6 4 6 0 1 8 β 1 3 + 1 3 5 2 1 2 6 3 β 1 2 + 4 6 4 6 0 1 8 β 1 1 + ⋯ + 8 6 0 4 2 4 4 ) / 2
(11218030*b15 + 11218030*b14 + 4646018*b13 + 13521263*b12 + 4646018*b11 - 21421777*b10 - 13521263*b9 + 21421777*b8 - 14598824*b7 - 14598824*b6 - 20648756*b4 + 12170410*b3 + 8604244*b2 + 8604244*b1 + 8604244) / 2
ν 14 \nu^{14} ν 1 4 = = =
9559272 β 15 − 9559272 β 14 − 23080535 β 13 + 67138788 β 12 + 23080535 β 11 + ⋯ − 39006928 9559272 \beta_{15} - 9559272 \beta_{14} - 23080535 \beta_{13} + 67138788 \beta_{12} + 23080535 \beta_{11} + \cdots - 39006928 9 5 5 9 2 7 2 β 1 5 − 9 5 5 9 2 7 2 β 1 4 − 2 3 0 8 0 5 3 5 β 1 3 + 6 7 1 3 8 7 8 8 β 1 2 + 2 3 0 8 0 5 3 5 β 1 1 + ⋯ − 3 9 0 0 6 9 2 8
9559272*b15 - 9559272*b14 - 23080535*b13 + 67138788*b12 + 23080535*b11 - 18251429*b10 + 67138788*b9 - 18251429*b8 + 30026021*b7 - 30026021*b6 - 25013827*b5 + 17686739*b2 - 17686739*b1 - 39006928
ν 15 \nu^{15} ν 1 5 = = =
( − 189898978 β 15 − 189898978 β 14 − 78656174 β 13 − 228801361 β 12 + ⋯ − 145453174 ) / 2 ( - 189898978 \beta_{15} - 189898978 \beta_{14} - 78656174 \beta_{13} - 228801361 \beta_{12} + \cdots - 145453174 ) / 2 ( − 1 8 9 8 9 8 9 7 8 β 1 5 − 1 8 9 8 9 8 9 7 8 β 1 4 − 7 8 6 5 6 1 7 4 β 1 3 − 2 2 8 8 0 1 3 6 1 β 1 2 + ⋯ − 1 4 5 4 5 3 1 7 4 ) / 2
(-189898978*b15 - 189898978*b14 - 78656174*b13 - 228801361*b12 - 78656174*b11 + 362463969*b10 + 228801361*b9 - 362463969*b8 + 246979968*b7 + 246979968*b6 + 349294036*b4 - 205709474*b3 - 145453174*b2 - 145453174*b1 - 145453174) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 1224 Z ) × \left(\mathbb{Z}/1224\mathbb{Z}\right)^\times ( Z / 1 2 2 4 Z ) × .
n n n
137 137 1 3 7
613 613 6 1 3
649 649 6 4 9
919 919 9 1 9
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
β 6 \beta_{6} β 6
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 16 + 4 T 5 14 − 32 T 5 13 + 8 T 5 12 + 56 T 5 11 + 336 T 5 10 + 72 T 5 9 + ⋯ + 1156 T_{5}^{16} + 4 T_{5}^{14} - 32 T_{5}^{13} + 8 T_{5}^{12} + 56 T_{5}^{11} + 336 T_{5}^{10} + 72 T_{5}^{9} + \cdots + 1156 T 5 1 6 + 4 T 5 1 4 − 3 2 T 5 1 3 + 8 T 5 1 2 + 5 6 T 5 1 1 + 3 3 6 T 5 1 0 + 7 2 T 5 9 + ⋯ + 1 1 5 6
T5^16 + 4*T5^14 - 32*T5^13 + 8*T5^12 + 56*T5^11 + 336*T5^10 + 72*T5^9 + 69*T5^8 - 2920*T5^7 + 14908*T5^6 - 34536*T5^5 + 46856*T5^4 - 41056*T5^3 + 23672*T5^2 - 7888*T5 + 1156
acting on S 2 n e w ( 1224 , [ χ ] ) S_{2}^{\mathrm{new}}(1224, [\chi]) S 2 n e w ( 1 2 2 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 T^{16} T 1 6
T^16
5 5 5
T 16 + 4 T 14 + ⋯ + 1156 T^{16} + 4 T^{14} + \cdots + 1156 T 1 6 + 4 T 1 4 + ⋯ + 1 1 5 6
T^16 + 4*T^14 - 32*T^13 + 8*T^12 + 56*T^11 + 336*T^10 + 72*T^9 + 69*T^8 - 2920*T^7 + 14908*T^6 - 34536*T^5 + 46856*T^4 - 41056*T^3 + 23672*T^2 - 7888*T + 1156
7 7 7
T 16 − 12 T 14 + ⋯ + 64 T^{16} - 12 T^{14} + \cdots + 64 T 1 6 − 1 2 T 1 4 + ⋯ + 6 4
T^16 - 12*T^14 + 40*T^13 + 72*T^12 - 848*T^11 + 1880*T^10 + 144*T^9 - 3948*T^8 + 3264*T^7 + 4608*T^6 - 15616*T^5 + 17536*T^4 - 19456*T^3 + 86656*T^2 + 1792*T + 64
11 11 1 1
T 16 − 8 T 15 + ⋯ + 73984 T^{16} - 8 T^{15} + \cdots + 73984 T 1 6 − 8 T 1 5 + ⋯ + 7 3 9 8 4
T^16 - 8*T^15 + 64*T^14 - 312*T^13 + 1472*T^12 - 5560*T^11 + 14896*T^10 - 20680*T^9 - 13567*T^8 + 132160*T^7 - 29360*T^6 - 271744*T^5 + 734336*T^4 - 589056*T^3 - 91904*T^2 + 226304*T + 73984
13 13 1 3
T 16 + 100 T 14 + ⋯ + 150544 T^{16} + 100 T^{14} + \cdots + 150544 T 1 6 + 1 0 0 T 1 4 + ⋯ + 1 5 0 5 4 4
T^16 + 100*T^14 + 3470*T^12 + 51356*T^10 + 322209*T^8 + 956728*T^6 + 1360232*T^4 + 836704*T^2 + 150544
17 17 1 7
T 16 + ⋯ + 6975757441 T^{16} + \cdots + 6975757441 T 1 6 + ⋯ + 6 9 7 5 7 5 7 4 4 1
T^16 + 52*T^14 + 80*T^13 + 1398*T^12 + 3328*T^11 + 34788*T^10 + 63664*T^9 + 714594*T^8 + 1082288*T^7 + 10053732*T^6 + 16350464*T^5 + 116762358*T^4 + 113588560*T^3 + 1255153588*T^2 + 6975757441
19 19 1 9
T 16 + 8 T 15 + ⋯ + 64 T^{16} + 8 T^{15} + \cdots + 64 T 1 6 + 8 T 1 5 + ⋯ + 6 4
T^16 + 8*T^15 + 32*T^14 - 88*T^13 + 274*T^12 + 808*T^11 + 1568*T^10 - 2360*T^9 + 6785*T^8 + 16800*T^7 + 21760*T^6 - 4832*T^5 + 10896*T^4 + 23808*T^3 + 25088*T^2 + 1792*T + 64
23 23 2 3
T 16 − 8 T 15 + ⋯ + 4624 T^{16} - 8 T^{15} + \cdots + 4624 T 1 6 − 8 T 1 5 + ⋯ + 4 6 2 4
T^16 - 8*T^15 + 56*T^14 - 136*T^13 + 96*T^12 - 312*T^11 + 744*T^10 + 2760*T^9 + 5841*T^8 - 132800*T^7 + 599552*T^6 - 1456800*T^5 + 2075648*T^4 - 1629888*T^3 + 594304*T^2 - 50048*T + 4624
29 29 2 9
T 16 + ⋯ + 277155904 T^{16} + \cdots + 277155904 T 1 6 + ⋯ + 2 7 7 1 5 5 9 0 4
T^16 + 32*T^15 + 516*T^14 + 5944*T^13 + 57096*T^12 + 466224*T^11 + 3209416*T^10 + 17954032*T^9 + 79163156*T^8 + 271528256*T^7 + 720217216*T^6 + 1461850112*T^5 + 2233053312*T^4 + 2509555712*T^3 + 2001953664*T^2 + 1044695296*T + 277155904
31 31 3 1
T 16 − 8 T 15 + ⋯ + 75203584 T^{16} - 8 T^{15} + \cdots + 75203584 T 1 6 − 8 T 1 5 + ⋯ + 7 5 2 0 3 5 8 4
T^16 - 8*T^15 + 136*T^14 - 1344*T^13 + 12320*T^12 - 65280*T^11 + 102080*T^10 + 1439104*T^9 - 4187568*T^8 + 14674560*T^7 + 299725440*T^6 + 220733952*T^5 + 683303424*T^4 + 1685881856*T^3 + 1556046848*T^2 + 563888128*T + 75203584
37 37 3 7
T 16 + ⋯ + 8599223824 T^{16} + \cdots + 8599223824 T 1 6 + ⋯ + 8 5 9 9 2 2 3 8 2 4
T^16 - 8*T^15 + 48*T^14 - 400*T^13 + 2304*T^12 - 6032*T^11 + 13744*T^10 + 100160*T^9 + 243144*T^8 - 759456*T^7 - 112576*T^6 - 35504192*T^5 + 242301056*T^4 - 291706176*T^3 + 1013300416*T^2 + 7412625152*T + 8599223824
41 41 4 1
T 16 + 40 T 15 + ⋯ + 6728836 T^{16} + 40 T^{15} + \cdots + 6728836 T 1 6 + 4 0 T 1 5 + ⋯ + 6 7 2 8 8 3 6
T^16 + 40*T^15 + 796*T^14 + 10352*T^13 + 97288*T^12 + 693272*T^11 + 3926112*T^10 + 18541816*T^9 + 75941797*T^8 + 272342416*T^7 + 813821092*T^6 + 1782130936*T^5 + 3774742216*T^4 + 7266994416*T^3 + 7298827320*T^2 + 404684752*T + 6728836
43 43 4 3
T 16 + ⋯ + 4773151744 T^{16} + \cdots + 4773151744 T 1 6 + ⋯ + 4 7 7 3 1 5 1 7 4 4
T^16 + 24*T^15 + 288*T^14 + 2600*T^13 + 33154*T^12 + 495944*T^11 + 5734304*T^10 + 46840552*T^9 + 273397857*T^8 + 1145506928*T^7 + 3404129408*T^6 + 6845948032*T^5 + 8434616384*T^4 + 4615941632*T^3 + 90316800*T^2 + 928542720*T + 4773151744
47 47 4 7
T 16 + ⋯ + 33926692864 T^{16} + \cdots + 33926692864 T 1 6 + ⋯ + 3 3 9 2 6 6 9 2 8 6 4
T^16 + 320*T^14 + 39600*T^12 + 2430848*T^10 + 78405440*T^8 + 1295664128*T^6 + 10049284096*T^4 + 33415151616*T^2 + 33926692864
53 53 5 3
T 16 + ⋯ + 143598555136 T^{16} + \cdots + 143598555136 T 1 6 + ⋯ + 1 4 3 5 9 8 5 5 5 1 3 6
T^16 - 24*T^15 + 288*T^14 - 1168*T^13 + 7672*T^12 - 159136*T^11 + 2291840*T^10 - 8051648*T^9 + 13889552*T^8 - 154473472*T^7 + 4190633984*T^6 - 9943587840*T^5 + 6255189504*T^4 + 104875491328*T^3 + 309237645312*T^2 + 298013687808*T + 143598555136
59 59 5 9
T 16 + ⋯ + 29302041354496 T^{16} + \cdots + 29302041354496 T 1 6 + ⋯ + 2 9 3 0 2 0 4 1 3 5 4 4 9 6
T^16 - 16*T^15 + 128*T^14 + 80*T^13 + 23196*T^12 - 353504*T^11 + 2690176*T^10 + 715552*T^9 + 140288516*T^8 - 1923928448*T^7 + 12964385792*T^6 - 8258330752*T^5 + 233189495616*T^4 - 2728695135232*T^3 + 15399918028800*T^2 - 30041605647360*T + 29302041354496
61 61 6 1
T 16 + ⋯ + 307387995210256 T^{16} + \cdots + 307387995210256 T 1 6 + ⋯ + 3 0 7 3 8 7 9 9 5 2 1 0 2 5 6
T^16 + 72*T^14 + 1024*T^13 + 2592*T^12 - 42400*T^11 + 546496*T^10 + 36814336*T^9 + 758021576*T^8 + 9728990848*T^7 + 110819820832*T^6 + 1067522693632*T^5 + 8063181639680*T^4 + 44834910822528*T^3 + 166621597900288*T^2 + 346522673526272*T + 307387995210256
67 67 6 7
( T 8 − 316 T 6 + ⋯ + 2236384 ) 2 (T^{8} - 316 T^{6} + \cdots + 2236384)^{2} ( T 8 − 3 1 6 T 6 + ⋯ + 2 2 3 6 3 8 4 ) 2
(T^8 - 316*T^6 + 304*T^5 + 30268*T^4 - 62560*T^3 - 943776*T^2 + 2796288*T + 2236384)^2
71 71 7 1
T 16 + ⋯ + 4226040064 T^{16} + \cdots + 4226040064 T 1 6 + ⋯ + 4 2 2 6 0 4 0 0 6 4
T^16 - 16*T^15 + 256*T^14 - 544*T^13 - 7680*T^12 - 44096*T^11 + 381952*T^10 + 6582144*T^9 + 45016096*T^8 - 146997504*T^7 + 1715838976*T^6 - 3044008448*T^5 + 7750688768*T^4 - 21619622912*T^3 + 29688266752*T^2 - 18098227200*T + 4226040064
73 73 7 3
T 16 + ⋯ + 130269021184 T^{16} + \cdots + 130269021184 T 1 6 + ⋯ + 1 3 0 2 6 9 0 2 1 1 8 4
T^16 - 24*T^15 + 204*T^14 + 648*T^13 - 29304*T^12 + 153472*T^11 + 2057512*T^10 - 29806992*T^9 + 139255940*T^8 - 219413696*T^7 - 352653376*T^6 + 4301922048*T^5 + 1301926400*T^4 - 12482152448*T^3 + 93848671232*T^2 - 96601657344*T + 130269021184
79 79 7 9
T 16 + ⋯ + 25305004646464 T^{16} + \cdots + 25305004646464 T 1 6 + ⋯ + 2 5 3 0 5 0 0 4 6 4 6 4 6 4
T^16 + 96*T^15 + 4436*T^14 + 130344*T^13 + 2703560*T^12 + 41381680*T^11 + 475248088*T^10 + 4096327248*T^9 + 26021726228*T^8 + 114777377344*T^7 + 292889510784*T^6 + 67709121280*T^5 - 1978040057728*T^4 - 3032010739712*T^3 + 18849119341696*T^2 - 24085593504000*T + 25305004646464
83 83 8 3
T 16 + ⋯ + 797549019136 T^{16} + \cdots + 797549019136 T 1 6 + ⋯ + 7 9 7 5 4 9 0 1 9 1 3 6
T^16 - 160*T^13 + 28272*T^12 - 23552*T^11 + 12800*T^10 - 1928960*T^9 + 201764672*T^8 - 399310848*T^7 + 224100352*T^6 + 14367764480*T^5 + 151126026240*T^4 + 150818947072*T^3 + 47817162752*T^2 - 276175781888*T + 797549019136
89 89 8 9
T 16 + ⋯ + 47876546426944 T^{16} + \cdots + 47876546426944 T 1 6 + ⋯ + 4 7 8 7 6 5 4 6 4 2 6 9 4 4
T^16 + 1040*T^14 + 415148*T^12 + 80091216*T^10 + 7698035700*T^8 + 337001054496*T^6 + 4962618377632*T^4 + 27801322739584*T^2 + 47876546426944
97 97 9 7
T 16 + ⋯ + 343239946813696 T^{16} + \cdots + 343239946813696 T 1 6 + ⋯ + 3 4 3 2 3 9 9 4 6 8 1 3 6 9 6
T^16 - 56*T^15 + 1548*T^14 - 30584*T^13 + 514952*T^12 - 7249936*T^11 + 79544536*T^10 - 482284720*T^9 - 1194378748*T^8 + 36979900256*T^7 - 71415011680*T^6 - 1812248538624*T^5 + 30098729985152*T^4 - 145437369324288*T^3 + 532528882314496*T^2 - 717986016227328*T + 343239946813696
show more
show less