Properties

Label 1224.2.bq.e
Level 12241224
Weight 22
Character orbit 1224.bq
Analytic conductor 9.7749.774
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(145,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1224.bq (of order 88, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.773689207409.77368920740
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ8)\Q(\zeta_{8})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+36x14+466x12+2956x10+10049x8+18032x6+14800x4+3200x2+64 x^{16} + 36x^{14} + 466x^{12} + 2956x^{10} + 10049x^{8} + 18032x^{6} + 14800x^{4} + 3200x^{2} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: SU(2)[C8]\mathrm{SU}(2)[C_{8}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β14+β7+β4)q5+(β10+β6++β1)q7+(β14+β13+β2)q11+(β15+β14++β3)q13++(β152β14++2)q97+O(q100) q + ( - \beta_{14} + \beta_{7} + \beta_{4}) q^{5} + ( - \beta_{10} + \beta_{6} + \cdots + \beta_1) q^{7} + ( - \beta_{14} + \beta_{13} + \cdots - \beta_{2}) q^{11} + (\beta_{15} + \beta_{14} + \cdots + \beta_{3}) q^{13}+ \cdots + ( - \beta_{15} - 2 \beta_{14} + \cdots + 2) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+8q118q19+8q238q2532q29+8q3116q35+8q3740q4124q43+24q49+24q53+16q59+64q65+16q71+24q7396q79++56q97+O(q100) 16 q + 8 q^{11} - 8 q^{19} + 8 q^{23} - 8 q^{25} - 32 q^{29} + 8 q^{31} - 16 q^{35} + 8 q^{37} - 40 q^{41} - 24 q^{43} + 24 q^{49} + 24 q^{53} + 16 q^{59} + 64 q^{65} + 16 q^{71} + 24 q^{73} - 96 q^{79}+ \cdots + 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+36x14+466x12+2956x10+10049x8+18032x6+14800x4+3200x2+64 x^{16} + 36x^{14} + 466x^{12} + 2956x^{10} + 10049x^{8} + 18032x^{6} + 14800x^{4} + 3200x^{2} + 64 : Copy content Toggle raw display

β1\beta_{1}== (2ν15+12ν14+51ν13+393ν12+264ν11+4324ν101058ν9+2168)/1088 ( 2 \nu^{15} + 12 \nu^{14} + 51 \nu^{13} + 393 \nu^{12} + 264 \nu^{11} + 4324 \nu^{10} - 1058 \nu^{9} + \cdots - 2168 ) / 1088 Copy content Toggle raw display
β2\beta_{2}== (2ν1512ν14+51ν13393ν12+264ν114324ν101058ν9++1080)/1088 ( 2 \nu^{15} - 12 \nu^{14} + 51 \nu^{13} - 393 \nu^{12} + 264 \nu^{11} - 4324 \nu^{10} - 1058 \nu^{9} + \cdots + 1080 ) / 1088 Copy content Toggle raw display
β3\beta_{3}== (23ν15776ν139062ν1150684ν9150727ν7238604ν5+28576ν)/2176 ( - 23 \nu^{15} - 776 \nu^{13} - 9062 \nu^{11} - 50684 \nu^{9} - 150727 \nu^{7} - 238604 \nu^{5} + \cdots - 28576 \nu ) / 2176 Copy content Toggle raw display
β4\beta_{4}== (47ν15+1492ν13+15446ν11+69732ν9+137983ν7+75336ν5+30720ν)/4352 ( 47 \nu^{15} + 1492 \nu^{13} + 15446 \nu^{11} + 69732 \nu^{9} + 137983 \nu^{7} + 75336 \nu^{5} + \cdots - 30720 \nu ) / 4352 Copy content Toggle raw display
β5\beta_{5}== (39ν141288ν1214390ν1073964ν8187047ν6214076ν4+7456)/2176 ( - 39 \nu^{14} - 1288 \nu^{12} - 14390 \nu^{10} - 73964 \nu^{8} - 187047 \nu^{6} - 214076 \nu^{4} + \cdots - 7456 ) / 2176 Copy content Toggle raw display
β6\beta_{6}== (15ν15+124ν14+454ν13+4032ν12+4174ν11+43768ν10++6016)/4352 ( 15 \nu^{15} + 124 \nu^{14} + 454 \nu^{13} + 4032 \nu^{12} + 4174 \nu^{11} + 43768 \nu^{10} + \cdots + 6016 ) / 4352 Copy content Toggle raw display
β7\beta_{7}== (15ν15124ν14+454ν134032ν12+4174ν1143768ν10+6016)/4352 ( 15 \nu^{15} - 124 \nu^{14} + 454 \nu^{13} - 4032 \nu^{12} + 4174 \nu^{11} - 43768 \nu^{10} + \cdots - 6016 ) / 4352 Copy content Toggle raw display
β8\beta_{8}== (29ν15+3ν14+957ν13+127ν12+10678ν11+1938ν10+54822ν9++1048)/1088 ( 29 \nu^{15} + 3 \nu^{14} + 957 \nu^{13} + 127 \nu^{12} + 10678 \nu^{11} + 1938 \nu^{10} + 54822 \nu^{9} + \cdots + 1048 ) / 1088 Copy content Toggle raw display
β9\beta_{9}== (35ν15+67ν14+1138ν13+2194ν12+12294ν11+24086ν10+1680)/2176 ( 35 \nu^{15} + 67 \nu^{14} + 1138 \nu^{13} + 2194 \nu^{12} + 12294 \nu^{11} + 24086 \nu^{10} + \cdots - 1680 ) / 2176 Copy content Toggle raw display
β10\beta_{10}== (29ν15+3ν14957ν13+127ν1210678ν11+1938ν10++1048)/1088 ( - 29 \nu^{15} + 3 \nu^{14} - 957 \nu^{13} + 127 \nu^{12} - 10678 \nu^{11} + 1938 \nu^{10} + \cdots + 1048 ) / 1088 Copy content Toggle raw display
β11\beta_{11}== (81ν15123ν142770ν133952ν1232850ν1141918ν10++11680)/4352 ( - 81 \nu^{15} - 123 \nu^{14} - 2770 \nu^{13} - 3952 \nu^{12} - 32850 \nu^{11} - 41918 \nu^{10} + \cdots + 11680 ) / 4352 Copy content Toggle raw display
β12\beta_{12}== (35ν15+67ν141138ν13+2194ν1212294ν11+24086ν10+1680)/2176 ( - 35 \nu^{15} + 67 \nu^{14} - 1138 \nu^{13} + 2194 \nu^{12} - 12294 \nu^{11} + 24086 \nu^{10} + \cdots - 1680 ) / 2176 Copy content Toggle raw display
β13\beta_{13}== (81ν15+123ν142770ν13+3952ν1232850ν11+41918ν10+11680)/4352 ( - 81 \nu^{15} + 123 \nu^{14} - 2770 \nu^{13} + 3952 \nu^{12} - 32850 \nu^{11} + 41918 \nu^{10} + \cdots - 11680 ) / 4352 Copy content Toggle raw display
β14\beta_{14}== (22ν15+245ν14770ν13+8104ν129652ν11+90498ν10++352)/4352 ( - 22 \nu^{15} + 245 \nu^{14} - 770 \nu^{13} + 8104 \nu^{12} - 9652 \nu^{11} + 90498 \nu^{10} + \cdots + 352 ) / 4352 Copy content Toggle raw display
β15\beta_{15}== (22ν15245ν14770ν138104ν129652ν1190498ν10+352)/4352 ( - 22 \nu^{15} - 245 \nu^{14} - 770 \nu^{13} - 8104 \nu^{12} - 9652 \nu^{11} - 90498 \nu^{10} + \cdots - 352 ) / 4352 Copy content Toggle raw display
ν\nu== (β12β10β9+β8+2β3)/2 ( \beta_{12} - \beta_{10} - \beta_{9} + \beta_{8} + 2\beta_{3} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β13+2β12+β11β10+2β9β8+β7β6+4 - \beta_{13} + 2 \beta_{12} + \beta_{11} - \beta_{10} + 2 \beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} + \cdots - 4 Copy content Toggle raw display
ν3\nu^{3}== (6β156β142β1311β122β11+15β10+11β9+6)/2 ( - 6 \beta_{15} - 6 \beta_{14} - 2 \beta_{13} - 11 \beta_{12} - 2 \beta_{11} + 15 \beta_{10} + 11 \beta_{9} + \cdots - 6 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== 5β15+5β14+16β1344β1216β11+14β10++39 - 5 \beta_{15} + 5 \beta_{14} + 16 \beta_{13} - 44 \beta_{12} - 16 \beta_{11} + 14 \beta_{10} + \cdots + 39 Copy content Toggle raw display
ν5\nu^{5}== (126β15+126β14+50β13+167β12+50β11257β10++108)/2 ( 126 \beta_{15} + 126 \beta_{14} + 50 \beta_{13} + 167 \beta_{12} + 50 \beta_{11} - 257 \beta_{10} + \cdots + 108 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 108β15108β14275β13+796β12+275β11225β10+532 108 \beta_{15} - 108 \beta_{14} - 275 \beta_{13} + 796 \beta_{12} + 275 \beta_{11} - 225 \beta_{10} + \cdots - 532 Copy content Toggle raw display
ν7\nu^{7}== (2258β152258β14926β132785β12926β11+4393β10+1806)/2 ( - 2258 \beta_{15} - 2258 \beta_{14} - 926 \beta_{13} - 2785 \beta_{12} - 926 \beta_{11} + 4393 \beta_{10} + \cdots - 1806 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== 1933β15+1933β14+4718β1313740β124718β11++8355 - 1933 \beta_{15} + 1933 \beta_{14} + 4718 \beta_{13} - 13740 \beta_{12} - 4718 \beta_{11} + \cdots + 8355 Copy content Toggle raw display
ν9\nu^{9}== (38890β15+38890β14+16070β13+47145β12+16070β11++30256)/2 ( 38890 \beta_{15} + 38890 \beta_{14} + 16070 \beta_{13} + 47145 \beta_{12} + 16070 \beta_{11} + \cdots + 30256 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== 33206β1533206β1480351β13+233944β12+80351β11+137862 33206 \beta_{15} - 33206 \beta_{14} - 80351 \beta_{13} + 233944 \beta_{12} + 80351 \beta_{11} + \cdots - 137862 Copy content Toggle raw display
ν11\nu^{11}== (661806β15661806β14273970β13798691β12273970β11+509542)/2 ( - 661806 \beta_{15} - 661806 \beta_{14} - 273970 \beta_{13} - 798691 \beta_{12} - 273970 \beta_{11} + \cdots - 509542 ) / 2 Copy content Toggle raw display
ν12\nu^{12}== 564289β15+564289β14+1362980β133966012β121362980β11++2312571 - 564289 \beta_{15} + 564289 \beta_{14} + 1362980 \beta_{13} - 3966012 \beta_{12} - 1362980 \beta_{11} + \cdots + 2312571 Copy content Toggle raw display
ν13\nu^{13}== (11218030β15+11218030β14+4646018β13+13521263β12+4646018β11++8604244)/2 ( 11218030 \beta_{15} + 11218030 \beta_{14} + 4646018 \beta_{13} + 13521263 \beta_{12} + 4646018 \beta_{11} + \cdots + 8604244 ) / 2 Copy content Toggle raw display
ν14\nu^{14}== 9559272β159559272β1423080535β13+67138788β12+23080535β11+39006928 9559272 \beta_{15} - 9559272 \beta_{14} - 23080535 \beta_{13} + 67138788 \beta_{12} + 23080535 \beta_{11} + \cdots - 39006928 Copy content Toggle raw display
ν15\nu^{15}== (189898978β15189898978β1478656174β13228801361β12+145453174)/2 ( - 189898978 \beta_{15} - 189898978 \beta_{14} - 78656174 \beta_{13} - 228801361 \beta_{12} + \cdots - 145453174 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1224Z)×\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times.

nn 137137 613613 649649 919919
χ(n)\chi(n) 11 11 β6\beta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
145.1
4.11290i
1.88319i
0.149074i
2.44964i
1.58886i
0.535137i
1.94001i
1.71472i
1.58886i
0.535137i
1.94001i
1.71472i
4.11290i
1.88319i
0.149074i
2.44964i
0 0 0 −1.19125 + 2.87594i 0 −0.497533 1.20115i 0 0 0
145.2 0 0 0 −1.10335 + 2.66372i 0 1.25868 + 3.03872i 0 0 0
145.3 0 0 0 0.325635 0.786153i 0 0.663444 + 1.60170i 0 0 0
145.4 0 0 0 0.554753 1.33929i 0 −0.0103761 0.0250502i 0 0 0
433.1 0 0 0 −2.39179 0.990712i 0 2.00524 0.830597i 0 0 0
433.2 0 0 0 0.429478 + 0.177896i 0 −1.62064 + 0.671292i 0 0 0
433.3 0 0 0 0.868455 + 0.359726i 0 −4.01891 + 1.66469i 0 0 0
433.4 0 0 0 2.50807 + 1.03888i 0 2.22010 0.919595i 0 0 0
865.1 0 0 0 −2.39179 + 0.990712i 0 2.00524 + 0.830597i 0 0 0
865.2 0 0 0 0.429478 0.177896i 0 −1.62064 0.671292i 0 0 0
865.3 0 0 0 0.868455 0.359726i 0 −4.01891 1.66469i 0 0 0
865.4 0 0 0 2.50807 1.03888i 0 2.22010 + 0.919595i 0 0 0
937.1 0 0 0 −1.19125 2.87594i 0 −0.497533 + 1.20115i 0 0 0
937.2 0 0 0 −1.10335 2.66372i 0 1.25868 3.03872i 0 0 0
937.3 0 0 0 0.325635 + 0.786153i 0 0.663444 1.60170i 0 0 0
937.4 0 0 0 0.554753 + 1.33929i 0 −0.0103761 + 0.0250502i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 145.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.bq.e 16
3.b odd 2 1 408.2.ba.a 16
12.b even 2 1 816.2.bq.f 16
17.d even 8 1 inner 1224.2.bq.e 16
51.g odd 8 1 408.2.ba.a 16
51.i even 16 1 6936.2.a.bl 8
51.i even 16 1 6936.2.a.bo 8
204.p even 8 1 816.2.bq.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.2.ba.a 16 3.b odd 2 1
408.2.ba.a 16 51.g odd 8 1
816.2.bq.f 16 12.b even 2 1
816.2.bq.f 16 204.p even 8 1
1224.2.bq.e 16 1.a even 1 1 trivial
1224.2.bq.e 16 17.d even 8 1 inner
6936.2.a.bl 8 51.i even 16 1
6936.2.a.bo 8 51.i even 16 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T516+4T51432T513+8T512+56T511+336T510+72T59++1156 T_{5}^{16} + 4 T_{5}^{14} - 32 T_{5}^{13} + 8 T_{5}^{12} + 56 T_{5}^{11} + 336 T_{5}^{10} + 72 T_{5}^{9} + \cdots + 1156 acting on S2new(1224,[χ])S_{2}^{\mathrm{new}}(1224, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16+4T14++1156 T^{16} + 4 T^{14} + \cdots + 1156 Copy content Toggle raw display
77 T1612T14++64 T^{16} - 12 T^{14} + \cdots + 64 Copy content Toggle raw display
1111 T168T15++73984 T^{16} - 8 T^{15} + \cdots + 73984 Copy content Toggle raw display
1313 T16+100T14++150544 T^{16} + 100 T^{14} + \cdots + 150544 Copy content Toggle raw display
1717 T16++6975757441 T^{16} + \cdots + 6975757441 Copy content Toggle raw display
1919 T16+8T15++64 T^{16} + 8 T^{15} + \cdots + 64 Copy content Toggle raw display
2323 T168T15++4624 T^{16} - 8 T^{15} + \cdots + 4624 Copy content Toggle raw display
2929 T16++277155904 T^{16} + \cdots + 277155904 Copy content Toggle raw display
3131 T168T15++75203584 T^{16} - 8 T^{15} + \cdots + 75203584 Copy content Toggle raw display
3737 T16++8599223824 T^{16} + \cdots + 8599223824 Copy content Toggle raw display
4141 T16+40T15++6728836 T^{16} + 40 T^{15} + \cdots + 6728836 Copy content Toggle raw display
4343 T16++4773151744 T^{16} + \cdots + 4773151744 Copy content Toggle raw display
4747 T16++33926692864 T^{16} + \cdots + 33926692864 Copy content Toggle raw display
5353 T16++143598555136 T^{16} + \cdots + 143598555136 Copy content Toggle raw display
5959 T16++29302041354496 T^{16} + \cdots + 29302041354496 Copy content Toggle raw display
6161 T16++307387995210256 T^{16} + \cdots + 307387995210256 Copy content Toggle raw display
6767 (T8316T6++2236384)2 (T^{8} - 316 T^{6} + \cdots + 2236384)^{2} Copy content Toggle raw display
7171 T16++4226040064 T^{16} + \cdots + 4226040064 Copy content Toggle raw display
7373 T16++130269021184 T^{16} + \cdots + 130269021184 Copy content Toggle raw display
7979 T16++25305004646464 T^{16} + \cdots + 25305004646464 Copy content Toggle raw display
8383 T16++797549019136 T^{16} + \cdots + 797549019136 Copy content Toggle raw display
8989 T16++47876546426944 T^{16} + \cdots + 47876546426944 Copy content Toggle raw display
9797 T16++343239946813696 T^{16} + \cdots + 343239946813696 Copy content Toggle raw display
show more
show less