L(s) = 1 | + (−1.10 − 2.66i)5-s + (1.25 − 3.03i)7-s + (−1.66 − 0.691i)11-s + 1.79i·13-s + (0.985 − 4.00i)17-s + (2.04 + 2.04i)19-s + (−2.97 − 1.23i)23-s + (−2.34 + 2.34i)25-s + (−2.39 − 5.78i)29-s + (−0.769 + 0.318i)31-s − 9.48·35-s + (−3.77 + 1.56i)37-s + (−3.11 + 7.51i)41-s + (−1.19 + 1.19i)43-s + 6.25i·47-s + ⋯ |
L(s) = 1 | + (−0.493 − 1.19i)5-s + (0.475 − 1.14i)7-s + (−0.503 − 0.208i)11-s + 0.497i·13-s + (0.238 − 0.971i)17-s + (0.468 + 0.468i)19-s + (−0.620 − 0.257i)23-s + (−0.468 + 0.468i)25-s + (−0.444 − 1.07i)29-s + (−0.138 + 0.0572i)31-s − 1.60·35-s + (−0.620 + 0.256i)37-s + (−0.486 + 1.17i)41-s + (−0.182 + 0.182i)43-s + 0.912i·47-s + ⋯ |
Λ(s)=(=(1224s/2ΓC(s)L(s)(−0.878+0.477i)Λ(2−s)
Λ(s)=(=(1224s/2ΓC(s+1/2)L(s)(−0.878+0.477i)Λ(1−s)
Degree: |
2 |
Conductor: |
1224
= 23⋅32⋅17
|
Sign: |
−0.878+0.477i
|
Analytic conductor: |
9.77368 |
Root analytic conductor: |
3.12629 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1224(937,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1224, ( :1/2), −0.878+0.477i)
|
Particular Values
L(1) |
≈ |
1.049995007 |
L(21) |
≈ |
1.049995007 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | 1+(−0.985+4.00i)T |
good | 5 | 1+(1.10+2.66i)T+(−3.53+3.53i)T2 |
| 7 | 1+(−1.25+3.03i)T+(−4.94−4.94i)T2 |
| 11 | 1+(1.66+0.691i)T+(7.77+7.77i)T2 |
| 13 | 1−1.79iT−13T2 |
| 19 | 1+(−2.04−2.04i)T+19iT2 |
| 23 | 1+(2.97+1.23i)T+(16.2+16.2i)T2 |
| 29 | 1+(2.39+5.78i)T+(−20.5+20.5i)T2 |
| 31 | 1+(0.769−0.318i)T+(21.9−21.9i)T2 |
| 37 | 1+(3.77−1.56i)T+(26.1−26.1i)T2 |
| 41 | 1+(3.11−7.51i)T+(−28.9−28.9i)T2 |
| 43 | 1+(1.19−1.19i)T−43iT2 |
| 47 | 1−6.25iT−47T2 |
| 53 | 1+(4.85+4.85i)T+53iT2 |
| 59 | 1+(4.81−4.81i)T−59iT2 |
| 61 | 1+(−5.35+12.9i)T+(−43.1−43.1i)T2 |
| 67 | 1+13.3T+67T2 |
| 71 | 1+(−9.25+3.83i)T+(50.2−50.2i)T2 |
| 73 | 1+(−0.877−2.11i)T+(−51.6+51.6i)T2 |
| 79 | 1+(13.4+5.58i)T+(55.8+55.8i)T2 |
| 83 | 1+(−8.07−8.07i)T+83iT2 |
| 89 | 1+16.4iT−89T2 |
| 97 | 1+(6.34+15.3i)T+(−68.5+68.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.441468129929827733485195793544, −8.367404127201515643207568530670, −7.86838306133741647885595673442, −7.13565306481382791113935717208, −5.92401736985480213572031786813, −4.81516154621561880019784470502, −4.40696724222079769811523261313, −3.29047963124872771981006873554, −1.61926588041217776757982919474, −0.44506913901164339091540459362,
1.93159167772167607577653588116, 2.93462803799876286652693241000, 3.77755490573068693686716492857, 5.17810490099376225956911351469, 5.78739026141636165205973623702, 6.88291671017115834078319908206, 7.59616550236636423207985091654, 8.379386264799849365961901452300, 9.160982726052205153405372703817, 10.33401590623035804719633126121