Properties

Label 6936.2.a.bl
Level $6936$
Weight $2$
Character orbit 6936.a
Self dual yes
Analytic conductor $55.384$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6936,2,Mod(1,6936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6936.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6936 = 2^{3} \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.3842388420\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.77984694272.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 10x^{6} + 36x^{5} + 39x^{4} - 96x^{3} - 56x^{2} + 64x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 408)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{5} - \beta_{7} q^{7} + q^{9} + ( - \beta_{7} + \beta_{4} + \beta_{2} + \cdots - 1) q^{11} + (\beta_{5} + \beta_{3} + \beta_{2} + \cdots - 1) q^{13}+ \cdots + ( - \beta_{7} + \beta_{4} + \beta_{2} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 4 q^{5} + 8 q^{9} - 4 q^{11} - 4 q^{13} + 4 q^{15} + 4 q^{19} + 4 q^{23} - 4 q^{25} - 8 q^{27} - 8 q^{31} + 4 q^{33} + 8 q^{35} - 16 q^{37} + 4 q^{39} - 20 q^{41} + 28 q^{43} - 4 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} - 10x^{6} + 36x^{5} + 39x^{4} - 96x^{3} - 56x^{2} + 64x - 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} - 16\nu^{6} + 46\nu^{5} + 96\nu^{4} - 365\nu^{3} - 68\nu^{2} + 624\nu - 216 ) / 68 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{7} - 15\nu^{6} + 24\nu^{5} + 56\nu^{4} - 186\nu^{3} + 17\nu^{2} + 296\nu - 92 ) / 34 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 9\nu^{7} - 42\nu^{6} - 62\nu^{5} + 388\nu^{4} - 21\nu^{3} - 850\nu^{2} + 380\nu + 164 ) / 68 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 13\nu^{7} - 72\nu^{6} - 14\nu^{5} + 500\nu^{4} - 393\nu^{3} - 748\nu^{2} + 904\nu - 292 ) / 68 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -27\nu^{7} + 160\nu^{6} - 18\nu^{5} - 1028\nu^{4} + 811\nu^{3} + 1632\nu^{2} - 1412\nu + 120 ) / 68 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 24\nu^{7} - 129\nu^{6} - 52\nu^{5} + 876\nu^{4} - 294\nu^{3} - 1479\nu^{2} + 628\nu - 16 ) / 34 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} - \beta_{3} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} - 2\beta_{6} + 3\beta_{5} - 3\beta_{4} - 4\beta_{3} - 2\beta_{2} + 7\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -5\beta_{7} - 9\beta_{6} + 16\beta_{5} - 14\beta_{4} - 19\beta_{3} - 9\beta_{2} + 19\beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -25\beta_{7} - 45\beta_{6} + 63\beta_{5} - 54\beta_{4} - 75\beta_{3} - 48\beta_{2} + 85\beta _1 + 113 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -108\beta_{7} - 188\beta_{6} + 275\beta_{5} - 223\beta_{4} - 313\beta_{3} - 208\beta_{2} + 315\beta _1 + 492 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -463\beta_{7} - 804\beta_{6} + 1129\beta_{5} - 903\beta_{4} - 1262\beta_{3} - 918\beta_{2} + 1305\beta _1 + 1896 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.44964
0.535137
1.94001
4.11290
−1.71472
−1.58886
−1.88319
0.149074
0 −1.00000 0 −2.88319 0 −3.28909 0 1.00000 0
1.2 0 −1.00000 0 −2.71472 0 2.40302 0 1.00000 0
1.3 0 −1.00000 0 −2.58886 0 −2.17045 0 1.00000 0
1.4 0 −1.00000 0 −0.850926 0 1.73366 0 1.00000 0
1.5 0 −1.00000 0 −0.464863 0 −1.75417 0 1.00000 0
1.6 0 −1.00000 0 0.940008 0 4.35003 0 1.00000 0
1.7 0 −1.00000 0 1.44964 0 0.0271141 0 1.00000 0
1.8 0 −1.00000 0 3.11290 0 −1.30012 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6936.2.a.bl 8
17.b even 2 1 6936.2.a.bo 8
17.e odd 16 2 408.2.ba.a 16
51.i even 16 2 1224.2.bq.e 16
68.i even 16 2 816.2.bq.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.2.ba.a 16 17.e odd 16 2
816.2.bq.f 16 68.i even 16 2
1224.2.bq.e 16 51.i even 16 2
6936.2.a.bl 8 1.a even 1 1 trivial
6936.2.a.bo 8 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6936))\):

\( T_{5}^{8} + 4T_{5}^{7} - 10T_{5}^{6} - 52T_{5}^{5} - T_{5}^{4} + 136T_{5}^{3} + 44T_{5}^{2} - 80T_{5} - 34 \) Copy content Toggle raw display
\( T_{7}^{8} - 24T_{7}^{6} - 16T_{7}^{5} + 150T_{7}^{4} + 144T_{7}^{3} - 264T_{7}^{2} - 288T_{7} + 8 \) Copy content Toggle raw display
\( T_{11}^{8} + 4T_{11}^{7} - 30T_{11}^{6} - 140T_{11}^{5} + 97T_{11}^{4} + 1032T_{11}^{3} + 1256T_{11}^{2} + 160T_{11} - 272 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T + 1)^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 4 T^{7} + \cdots - 34 \) Copy content Toggle raw display
$7$ \( T^{8} - 24 T^{6} + \cdots + 8 \) Copy content Toggle raw display
$11$ \( T^{8} + 4 T^{7} + \cdots - 272 \) Copy content Toggle raw display
$13$ \( T^{8} + 4 T^{7} + \cdots - 388 \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} - 4 T^{7} + \cdots - 8 \) Copy content Toggle raw display
$23$ \( T^{8} - 4 T^{7} + \cdots + 68 \) Copy content Toggle raw display
$29$ \( T^{8} - 108 T^{6} + \cdots - 16648 \) Copy content Toggle raw display
$31$ \( T^{8} + 8 T^{7} + \cdots + 8672 \) Copy content Toggle raw display
$37$ \( T^{8} + 16 T^{7} + \cdots + 92732 \) Copy content Toggle raw display
$41$ \( T^{8} + 20 T^{7} + \cdots + 2594 \) Copy content Toggle raw display
$43$ \( T^{8} - 28 T^{7} + \cdots + 69088 \) Copy content Toggle raw display
$47$ \( T^{8} - 24 T^{7} + \cdots - 184192 \) Copy content Toggle raw display
$53$ \( T^{8} - 8 T^{7} + \cdots + 378944 \) Copy content Toggle raw display
$59$ \( T^{8} - 16 T^{7} + \cdots - 5413136 \) Copy content Toggle raw display
$61$ \( T^{8} + 24 T^{7} + \cdots - 17532484 \) Copy content Toggle raw display
$67$ \( T^{8} - 316 T^{6} + \cdots + 2236384 \) Copy content Toggle raw display
$71$ \( T^{8} - 248 T^{6} + \cdots - 65008 \) Copy content Toggle raw display
$73$ \( T^{8} + 40 T^{7} + \cdots + 360928 \) Copy content Toggle raw display
$79$ \( T^{8} + 8 T^{7} + \cdots + 5030408 \) Copy content Toggle raw display
$83$ \( T^{8} - 32 T^{7} + \cdots + 893056 \) Copy content Toggle raw display
$89$ \( T^{8} - 16 T^{7} + \cdots - 6919288 \) Copy content Toggle raw display
$97$ \( T^{8} + 48 T^{7} + \cdots + 18526736 \) Copy content Toggle raw display
show more
show less