Properties

Label 2-6936-1.1-c1-0-101
Degree $2$
Conductor $6936$
Sign $-1$
Analytic cond. $55.3842$
Root an. cond. $7.44205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 0.850·5-s + 1.73·7-s + 9-s + 0.361·11-s + 4.60·13-s + 0.850·15-s − 1.44·19-s − 1.73·21-s + 1.05·23-s − 4.27·25-s − 27-s − 2.88·29-s − 4.17·31-s − 0.361·33-s − 1.47·35-s − 6.58·37-s − 4.60·39-s − 4.23·41-s − 5.22·43-s − 0.850·45-s − 2.60·47-s − 3.99·49-s + 1.61·53-s − 0.307·55-s + 1.44·57-s + 10.9·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.380·5-s + 0.655·7-s + 0.333·9-s + 0.109·11-s + 1.27·13-s + 0.219·15-s − 0.331·19-s − 0.378·21-s + 0.219·23-s − 0.855·25-s − 0.192·27-s − 0.534·29-s − 0.749·31-s − 0.0629·33-s − 0.249·35-s − 1.08·37-s − 0.737·39-s − 0.661·41-s − 0.796·43-s − 0.126·45-s − 0.379·47-s − 0.570·49-s + 0.221·53-s − 0.0415·55-s + 0.191·57-s + 1.42·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6936\)    =    \(2^{3} \cdot 3 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(55.3842\)
Root analytic conductor: \(7.44205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6936,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + 0.850T + 5T^{2} \)
7 \( 1 - 1.73T + 7T^{2} \)
11 \( 1 - 0.361T + 11T^{2} \)
13 \( 1 - 4.60T + 13T^{2} \)
19 \( 1 + 1.44T + 19T^{2} \)
23 \( 1 - 1.05T + 23T^{2} \)
29 \( 1 + 2.88T + 29T^{2} \)
31 \( 1 + 4.17T + 31T^{2} \)
37 \( 1 + 6.58T + 37T^{2} \)
41 \( 1 + 4.23T + 41T^{2} \)
43 \( 1 + 5.22T + 43T^{2} \)
47 \( 1 + 2.60T + 47T^{2} \)
53 \( 1 - 1.61T + 53T^{2} \)
59 \( 1 - 10.9T + 59T^{2} \)
61 \( 1 + 9.62T + 61T^{2} \)
67 \( 1 - 8.12T + 67T^{2} \)
71 \( 1 - 1.13T + 71T^{2} \)
73 \( 1 - 3.95T + 73T^{2} \)
79 \( 1 - 1.86T + 79T^{2} \)
83 \( 1 + 11.2T + 83T^{2} \)
89 \( 1 - 14.0T + 89T^{2} \)
97 \( 1 + 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60888042278600510277150025695, −6.85936792172869664106517934840, −6.20478086952835101001241386935, −5.45156665354287318402377777428, −4.84689652015228420574588887643, −3.90498262246230633721141415271, −3.45631622667735741308635650223, −2.03483972912618317564268105069, −1.29686502255034160320028069763, 0, 1.29686502255034160320028069763, 2.03483972912618317564268105069, 3.45631622667735741308635650223, 3.90498262246230633721141415271, 4.84689652015228420574588887643, 5.45156665354287318402377777428, 6.20478086952835101001241386935, 6.85936792172869664106517934840, 7.60888042278600510277150025695

Graph of the $Z$-function along the critical line