L(s) = 1 | + (−0.346 − 1.37i)2-s + (−1.75 + 0.951i)4-s − 1.24i·5-s − 3.59·7-s + (1.91 + 2.08i)8-s + (−1.71 + 0.432i)10-s + 1.76i·11-s + 1.45i·13-s + (1.24 + 4.93i)14-s + (2.19 − 3.34i)16-s + 17-s + 3.75i·19-s + (1.18 + 2.19i)20-s + (2.42 − 0.612i)22-s + 4.84·23-s + ⋯ |
L(s) = 1 | + (−0.245 − 0.969i)2-s + (−0.879 + 0.475i)4-s − 0.558i·5-s − 1.35·7-s + (0.676 + 0.736i)8-s + (−0.541 + 0.136i)10-s + 0.532i·11-s + 0.403i·13-s + (0.333 + 1.31i)14-s + (0.547 − 0.836i)16-s + 0.242·17-s + 0.860i·19-s + (0.265 + 0.490i)20-s + (0.516 − 0.130i)22-s + 1.01·23-s + ⋯ |
Λ(s)=(=(1224s/2ΓC(s)L(s)(0.676+0.736i)Λ(2−s)
Λ(s)=(=(1224s/2ΓC(s+1/2)L(s)(0.676+0.736i)Λ(1−s)
Degree: |
2 |
Conductor: |
1224
= 23⋅32⋅17
|
Sign: |
0.676+0.736i
|
Analytic conductor: |
9.77368 |
Root analytic conductor: |
3.12629 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1224(613,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1224, ( :1/2), 0.676+0.736i)
|
Particular Values
L(1) |
≈ |
1.024417258 |
L(21) |
≈ |
1.024417258 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.346+1.37i)T |
| 3 | 1 |
| 17 | 1−T |
good | 5 | 1+1.24iT−5T2 |
| 7 | 1+3.59T+7T2 |
| 11 | 1−1.76iT−11T2 |
| 13 | 1−1.45iT−13T2 |
| 19 | 1−3.75iT−19T2 |
| 23 | 1−4.84T+23T2 |
| 29 | 1+7.54iT−29T2 |
| 31 | 1+1.06T+31T2 |
| 37 | 1−4.97iT−37T2 |
| 41 | 1−6.51T+41T2 |
| 43 | 1+0.946iT−43T2 |
| 47 | 1−3.46T+47T2 |
| 53 | 1+6.03iT−53T2 |
| 59 | 1−6.30iT−59T2 |
| 61 | 1+4.77iT−61T2 |
| 67 | 1−11.6iT−67T2 |
| 71 | 1−8.69T+71T2 |
| 73 | 1−14.6T+73T2 |
| 79 | 1−10.8T+79T2 |
| 83 | 1+11.5iT−83T2 |
| 89 | 1+7.56T+89T2 |
| 97 | 1−7.32T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.668540619133072335007267951394, −9.105729073626433502560746546686, −8.241528549053139495493264405490, −7.26877890734085025962345087424, −6.26486924029069905424570984084, −5.16229873515260996451149424190, −4.19698434610901721258132592209, −3.33830703556564641968264915314, −2.28848111587801542122097619031, −0.868948022525394123319433110421,
0.70197278102131051777393659550, 2.87002166344696793564199683185, 3.65124242472671573375678382816, 4.98852151870066186116440428126, 5.82903993301798597417925153886, 6.72070933491219345674870079468, 7.08281337070766631774232550687, 8.130520178469692360814958262730, 9.186769942018635118304705061685, 9.429148616796200465252141979655