L(s) = 1 | + (−0.346 − 1.37i)2-s + (−1.75 + 0.951i)4-s − 1.24i·5-s − 3.59·7-s + (1.91 + 2.08i)8-s + (−1.71 + 0.432i)10-s + 1.76i·11-s + 1.45i·13-s + (1.24 + 4.93i)14-s + (2.19 − 3.34i)16-s + 17-s + 3.75i·19-s + (1.18 + 2.19i)20-s + (2.42 − 0.612i)22-s + 4.84·23-s + ⋯ |
L(s) = 1 | + (−0.245 − 0.969i)2-s + (−0.879 + 0.475i)4-s − 0.558i·5-s − 1.35·7-s + (0.676 + 0.736i)8-s + (−0.541 + 0.136i)10-s + 0.532i·11-s + 0.403i·13-s + (0.333 + 1.31i)14-s + (0.547 − 0.836i)16-s + 0.242·17-s + 0.860i·19-s + (0.265 + 0.490i)20-s + (0.516 − 0.130i)22-s + 1.01·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.676 + 0.736i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.676 + 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.024417258\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.024417258\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.346 + 1.37i)T \) |
| 3 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 5 | \( 1 + 1.24iT - 5T^{2} \) |
| 7 | \( 1 + 3.59T + 7T^{2} \) |
| 11 | \( 1 - 1.76iT - 11T^{2} \) |
| 13 | \( 1 - 1.45iT - 13T^{2} \) |
| 19 | \( 1 - 3.75iT - 19T^{2} \) |
| 23 | \( 1 - 4.84T + 23T^{2} \) |
| 29 | \( 1 + 7.54iT - 29T^{2} \) |
| 31 | \( 1 + 1.06T + 31T^{2} \) |
| 37 | \( 1 - 4.97iT - 37T^{2} \) |
| 41 | \( 1 - 6.51T + 41T^{2} \) |
| 43 | \( 1 + 0.946iT - 43T^{2} \) |
| 47 | \( 1 - 3.46T + 47T^{2} \) |
| 53 | \( 1 + 6.03iT - 53T^{2} \) |
| 59 | \( 1 - 6.30iT - 59T^{2} \) |
| 61 | \( 1 + 4.77iT - 61T^{2} \) |
| 67 | \( 1 - 11.6iT - 67T^{2} \) |
| 71 | \( 1 - 8.69T + 71T^{2} \) |
| 73 | \( 1 - 14.6T + 73T^{2} \) |
| 79 | \( 1 - 10.8T + 79T^{2} \) |
| 83 | \( 1 + 11.5iT - 83T^{2} \) |
| 89 | \( 1 + 7.56T + 89T^{2} \) |
| 97 | \( 1 - 7.32T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.668540619133072335007267951394, −9.105729073626433502560746546686, −8.241528549053139495493264405490, −7.26877890734085025962345087424, −6.26486924029069905424570984084, −5.16229873515260996451149424190, −4.19698434610901721258132592209, −3.33830703556564641968264915314, −2.28848111587801542122097619031, −0.868948022525394123319433110421,
0.70197278102131051777393659550, 2.87002166344696793564199683185, 3.65124242472671573375678382816, 4.98852151870066186116440428126, 5.82903993301798597417925153886, 6.72070933491219345674870079468, 7.08281337070766631774232550687, 8.130520178469692360814958262730, 9.186769942018635118304705061685, 9.429148616796200465252141979655