Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1224,2,Mod(613,1224)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1224.613");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1224.f (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 408) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
613.1 |
|
−1.41025 | − | 0.105804i | 0 | 1.97761 | + | 0.298419i | − | 2.49626i | 0 | −1.77008 | −2.75735 | − | 0.630084i | 0 | −0.264113 | + | 3.52034i | |||||||||||||||||||||||||||||||||||||||||||||||||||
613.2 | −1.41025 | + | 0.105804i | 0 | 1.97761 | − | 0.298419i | 2.49626i | 0 | −1.77008 | −2.75735 | + | 0.630084i | 0 | −0.264113 | − | 3.52034i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
613.3 | −1.30332 | − | 0.548965i | 0 | 1.39727 | + | 1.43095i | 3.97294i | 0 | 3.04833 | −1.03555 | − | 2.63204i | 0 | 2.18101 | − | 5.17800i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
613.4 | −1.30332 | + | 0.548965i | 0 | 1.39727 | − | 1.43095i | − | 3.97294i | 0 | 3.04833 | −1.03555 | + | 2.63204i | 0 | 2.18101 | + | 5.17800i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
613.5 | −0.784673 | − | 1.17656i | 0 | −0.768577 | + | 1.84643i | − | 2.31278i | 0 | 2.94745 | 2.77551 | − | 0.544565i | 0 | −2.72112 | + | 1.81478i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
613.6 | −0.784673 | + | 1.17656i | 0 | −0.768577 | − | 1.84643i | 2.31278i | 0 | 2.94745 | 2.77551 | + | 0.544565i | 0 | −2.72112 | − | 1.81478i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
613.7 | −0.346935 | − | 1.37100i | 0 | −1.75927 | + | 0.951293i | − | 1.24794i | 0 | −3.59705 | 1.91457 | + | 2.08192i | 0 | −1.71093 | + | 0.432954i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
613.8 | −0.346935 | + | 1.37100i | 0 | −1.75927 | − | 0.951293i | 1.24794i | 0 | −3.59705 | 1.91457 | − | 2.08192i | 0 | −1.71093 | − | 0.432954i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
613.9 | 0.155777 | − | 1.40561i | 0 | −1.95147 | − | 0.437924i | 0.191498i | 0 | 1.22930 | −0.919543 | + | 2.67478i | 0 | 0.269171 | + | 0.0298310i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
613.10 | 0.155777 | + | 1.40561i | 0 | −1.95147 | + | 0.437924i | − | 0.191498i | 0 | 1.22930 | −0.919543 | − | 2.67478i | 0 | 0.269171 | − | 0.0298310i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
613.11 | 0.285600 | − | 1.38507i | 0 | −1.83687 | − | 0.791155i | − | 1.39571i | 0 | 4.88695 | −1.62042 | + | 2.31824i | 0 | −1.93317 | − | 0.398616i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
613.12 | 0.285600 | + | 1.38507i | 0 | −1.83687 | + | 0.791155i | 1.39571i | 0 | 4.88695 | −1.62042 | − | 2.31824i | 0 | −1.93317 | + | 0.398616i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
613.13 | 1.40380 | − | 0.171324i | 0 | 1.94130 | − | 0.481007i | 1.04568i | 0 | −0.744897 | 2.64278 | − | 1.00783i | 0 | 0.179150 | + | 1.46793i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
613.14 | 1.40380 | + | 0.171324i | 0 | 1.94130 | + | 0.481007i | − | 1.04568i | 0 | −0.744897 | 2.64278 | + | 1.00783i | 0 | 0.179150 | − | 1.46793i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1224.2.f.f | 14 | |
3.b | odd | 2 | 1 | 408.2.f.d | ✓ | 14 | |
4.b | odd | 2 | 1 | 4896.2.f.f | 14 | ||
8.b | even | 2 | 1 | inner | 1224.2.f.f | 14 | |
8.d | odd | 2 | 1 | 4896.2.f.f | 14 | ||
12.b | even | 2 | 1 | 1632.2.f.d | 14 | ||
24.f | even | 2 | 1 | 1632.2.f.d | 14 | ||
24.h | odd | 2 | 1 | 408.2.f.d | ✓ | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
408.2.f.d | ✓ | 14 | 3.b | odd | 2 | 1 | |
408.2.f.d | ✓ | 14 | 24.h | odd | 2 | 1 | |
1224.2.f.f | 14 | 1.a | even | 1 | 1 | trivial | |
1224.2.f.f | 14 | 8.b | even | 2 | 1 | inner | |
1632.2.f.d | 14 | 12.b | even | 2 | 1 | ||
1632.2.f.d | 14 | 24.f | even | 2 | 1 | ||
4896.2.f.f | 14 | 4.b | odd | 2 | 1 | ||
4896.2.f.f | 14 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|