Properties

Label 1224.2.f.f
Level 12241224
Weight 22
Character orbit 1224.f
Analytic conductor 9.7749.774
Analytic rank 00
Dimension 1414
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,2,Mod(613,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.613");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1224=233217 1224 = 2^{3} \cdot 3^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1224.f (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.773689207409.77368920740
Analytic rank: 00
Dimension: 1414
Coefficient field: Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x142x13+x12+2x1110x10+8x9+10x820x7+20x6++128 x^{14} - 2 x^{13} + x^{12} + 2 x^{11} - 10 x^{10} + 8 x^{9} + 10 x^{8} - 20 x^{7} + 20 x^{6} + \cdots + 128 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 27 2^{7}
Twist minimal: no (minimal twist has level 408)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β131,\beta_1,\ldots,\beta_{13} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β4q2β2q4β3q5+(β13β8+β1)q7β11q8+(β5+β31)q10+(β10+β7+β3)q11++(2β13+2β12+2β1)q98+O(q100) q + \beta_{4} q^{2} - \beta_{2} q^{4} - \beta_{3} q^{5} + ( - \beta_{13} - \beta_{8} + \beta_1) q^{7} - \beta_{11} q^{8} + ( - \beta_{5} + \beta_{3} - 1) q^{10} + ( - \beta_{10} + \beta_{7} + \cdots - \beta_{3}) q^{11}+ \cdots + ( - 2 \beta_{13} + 2 \beta_{12} + \cdots - 2 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 14q4q22q4+12q7+2q88q104q14+26q16+14q17+16q22+24q23+6q25+24q2616q28+4q31+6q324q344q38+28q40+12q98+O(q100) 14 q - 4 q^{2} - 2 q^{4} + 12 q^{7} + 2 q^{8} - 8 q^{10} - 4 q^{14} + 26 q^{16} + 14 q^{17} + 16 q^{22} + 24 q^{23} + 6 q^{25} + 24 q^{26} - 16 q^{28} + 4 q^{31} + 6 q^{32} - 4 q^{34} - 4 q^{38} + 28 q^{40}+ \cdots - 12 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x142x13+x12+2x1110x10+8x9+10x820x7+20x6++128 x^{14} - 2 x^{13} + x^{12} + 2 x^{11} - 10 x^{10} + 8 x^{9} + 10 x^{8} - 20 x^{7} + 20 x^{6} + \cdots + 128 : Copy content Toggle raw display

β1\beta_{1}== (ν12+3ν10+2ν8+8ν76ν616ν5+4ν416ν38ν2+32ν+48)/16 ( -\nu^{12} + 3\nu^{10} + 2\nu^{8} + 8\nu^{7} - 6\nu^{6} - 16\nu^{5} + 4\nu^{4} - 16\nu^{3} - 8\nu^{2} + 32\nu + 48 ) / 16 Copy content Toggle raw display
β2\beta_{2}== (ν13+ν12+ν113ν10+8ν9+2ν818ν7+10ν6++96)/32 ( - \nu^{13} + \nu^{12} + \nu^{11} - 3 \nu^{10} + 8 \nu^{9} + 2 \nu^{8} - 18 \nu^{7} + 10 \nu^{6} + \cdots + 96 ) / 32 Copy content Toggle raw display
β3\beta_{3}== (2ν13+ν127ν10+10ν9+6ν820ν7+18ν6+128ν)/32 ( - 2 \nu^{13} + \nu^{12} - 7 \nu^{10} + 10 \nu^{9} + 6 \nu^{8} - 20 \nu^{7} + 18 \nu^{6} + \cdots - 128 \nu ) / 32 Copy content Toggle raw display
β4\beta_{4}== (ν13+ν123ν11+5ν10+6ν914ν8+6ν7+18ν6++160)/32 ( \nu^{13} + \nu^{12} - 3 \nu^{11} + 5 \nu^{10} + 6 \nu^{9} - 14 \nu^{8} + 6 \nu^{7} + 18 \nu^{6} + \cdots + 160 ) / 32 Copy content Toggle raw display
β5\beta_{5}== (5ν12+7ν1012ν9+14ν8+36ν742ν616ν5+52ν4+96)/32 ( - 5 \nu^{12} + 7 \nu^{10} - 12 \nu^{9} + 14 \nu^{8} + 36 \nu^{7} - 42 \nu^{6} - 16 \nu^{5} + 52 \nu^{4} + \cdots - 96 ) / 32 Copy content Toggle raw display
β6\beta_{6}== (3ν132ν12+ν11+10ν1024ν98ν8+26ν744ν6+224)/32 ( 3 \nu^{13} - 2 \nu^{12} + \nu^{11} + 10 \nu^{10} - 24 \nu^{9} - 8 \nu^{8} + 26 \nu^{7} - 44 \nu^{6} + \cdots - 224 ) / 32 Copy content Toggle raw display
β7\beta_{7}== (2ν13+ν11+4ν1013ν98ν8+6ν720ν6+14ν5+176)/16 ( 2 \nu^{13} + \nu^{11} + 4 \nu^{10} - 13 \nu^{9} - 8 \nu^{8} + 6 \nu^{7} - 20 \nu^{6} + 14 \nu^{5} + \cdots - 176 ) / 16 Copy content Toggle raw display
β8\beta_{8}== (5ν132ν12+ν11+6ν1030ν912ν8+18ν736ν6+384)/32 ( 5 \nu^{13} - 2 \nu^{12} + \nu^{11} + 6 \nu^{10} - 30 \nu^{9} - 12 \nu^{8} + 18 \nu^{7} - 36 \nu^{6} + \cdots - 384 ) / 32 Copy content Toggle raw display
β9\beta_{9}== (3ν13+2ν114ν10+15ν9+16ν812ν7+4ν610ν5++160)/16 ( - 3 \nu^{13} + 2 \nu^{11} - 4 \nu^{10} + 15 \nu^{9} + 16 \nu^{8} - 12 \nu^{7} + 4 \nu^{6} - 10 \nu^{5} + \cdots + 160 ) / 16 Copy content Toggle raw display
β10\beta_{10}== (2ν137ν12+6ν11+13ν1036ν9+18ν8+40ν7102ν6+416)/32 ( 2 \nu^{13} - 7 \nu^{12} + 6 \nu^{11} + 13 \nu^{10} - 36 \nu^{9} + 18 \nu^{8} + 40 \nu^{7} - 102 \nu^{6} + \cdots - 416 ) / 32 Copy content Toggle raw display
β11\beta_{11}== (6ν13+7ν12+8ν1113ν10+38ν9+22ν876ν7++352)/32 ( - 6 \nu^{13} + 7 \nu^{12} + 8 \nu^{11} - 13 \nu^{10} + 38 \nu^{9} + 22 \nu^{8} - 76 \nu^{7} + \cdots + 352 ) / 32 Copy content Toggle raw display
β12\beta_{12}== (8ν139ν12+6ν11+27ν1070ν92ν8+80ν7162ν6+768)/32 ( 8 \nu^{13} - 9 \nu^{12} + 6 \nu^{11} + 27 \nu^{10} - 70 \nu^{9} - 2 \nu^{8} + 80 \nu^{7} - 162 \nu^{6} + \cdots - 768 ) / 32 Copy content Toggle raw display
β13\beta_{13}== (4ν135ν12+13ν1036ν94ν8+48ν762ν6+8ν5+400)/16 ( 4 \nu^{13} - 5 \nu^{12} + 13 \nu^{10} - 36 \nu^{9} - 4 \nu^{8} + 48 \nu^{7} - 62 \nu^{6} + 8 \nu^{5} + \cdots - 400 ) / 16 Copy content Toggle raw display
ν\nu== (β13β12+β10+β8+β7+β6+2β5+β4β2β1+1)/4 ( -\beta_{13} - \beta_{12} + \beta_{10} + \beta_{8} + \beta_{7} + \beta_{6} + 2\beta_{5} + \beta_{4} - \beta_{2} - \beta _1 + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β10+β7+β5β4+β2+β1)/2 ( -\beta_{10} + \beta_{7} + \beta_{5} - \beta_{4} + \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β13β12+β10β8+3β75β6+2β5+β4++1)/4 ( \beta_{13} - \beta_{12} + \beta_{10} - \beta_{8} + 3 \beta_{7} - 5 \beta_{6} + 2 \beta_{5} + \beta_{4} + \cdots + 1 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (2β13β10+2β9+β72β6β5+β4+β2β1+6)/2 ( 2\beta_{13} - \beta_{10} + 2\beta_{9} + \beta_{7} - 2\beta_{6} - \beta_{5} + \beta_{4} + \beta_{2} - \beta _1 + 6 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (5β133β12+7β104β9+β8+5β73β6++7)/4 ( - 5 \beta_{13} - 3 \beta_{12} + 7 \beta_{10} - 4 \beta_{9} + \beta_{8} + 5 \beta_{7} - 3 \beta_{6} + \cdots + 7 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (4β12+β10+2β8+3β7+2β6+β53β4+6)/2 ( - 4 \beta_{12} + \beta_{10} + 2 \beta_{8} + 3 \beta_{7} + 2 \beta_{6} + \beta_{5} - 3 \beta_{4} + \cdots - 6 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (3β13+3β124β117β109β8+15β713β6+15)/4 ( - 3 \beta_{13} + 3 \beta_{12} - 4 \beta_{11} - 7 \beta_{10} - 9 \beta_{8} + 15 \beta_{7} - 13 \beta_{6} + \cdots - 15 ) / 4 Copy content Toggle raw display
ν8\nu^{8}== (12β138β12+8β11+3β10+6β8+β718β6++14)/2 ( 12 \beta_{13} - 8 \beta_{12} + 8 \beta_{11} + 3 \beta_{10} + 6 \beta_{8} + \beta_{7} - 18 \beta_{6} + \cdots + 14 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (5β13+5β124β11+7β10+16β9+9β8+9β7++15)/4 ( - 5 \beta_{13} + 5 \beta_{12} - 4 \beta_{11} + 7 \beta_{10} + 16 \beta_{9} + 9 \beta_{8} + 9 \beta_{7} + \cdots + 15 ) / 4 Copy content Toggle raw display
ν10\nu^{10}== (4β1312β12+8β11+17β1020β9+2β8+3β7+26)/2 ( - 4 \beta_{13} - 12 \beta_{12} + 8 \beta_{11} + 17 \beta_{10} - 20 \beta_{9} + 2 \beta_{8} + 3 \beta_{7} + \cdots - 26 ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (27β13+11β1236β11+9β10+24β925β8+159)/4 ( - 27 \beta_{13} + 11 \beta_{12} - 36 \beta_{11} + 9 \beta_{10} + 24 \beta_{9} - 25 \beta_{8} + \cdots - 159 ) / 4 Copy content Toggle raw display
ν12\nu^{12}== (24β13+24β1121β1020β914β8+β734β6+2)/2 ( 24 \beta_{13} + 24 \beta_{11} - 21 \beta_{10} - 20 \beta_{9} - 14 \beta_{8} + \beta_{7} - 34 \beta_{6} + \cdots - 2 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (11β1327β12+36β11+71β10+24β9+121β863β7++63)/4 ( 11 \beta_{13} - 27 \beta_{12} + 36 \beta_{11} + 71 \beta_{10} + 24 \beta_{9} + 121 \beta_{8} - 63 \beta_{7} + \cdots + 63 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1224Z)×\left(\mathbb{Z}/1224\mathbb{Z}\right)^\times.

nn 137137 613613 649649 919919
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
613.1
0.105804 + 1.41025i
0.105804 1.41025i
0.548965 + 1.30332i
0.548965 1.30332i
−1.17656 0.784673i
−1.17656 + 0.784673i
1.37100 + 0.346935i
1.37100 0.346935i
−1.40561 + 0.155777i
−1.40561 0.155777i
1.38507 0.285600i
1.38507 + 0.285600i
0.171324 1.40380i
0.171324 + 1.40380i
−1.41025 0.105804i 0 1.97761 + 0.298419i 2.49626i 0 −1.77008 −2.75735 0.630084i 0 −0.264113 + 3.52034i
613.2 −1.41025 + 0.105804i 0 1.97761 0.298419i 2.49626i 0 −1.77008 −2.75735 + 0.630084i 0 −0.264113 3.52034i
613.3 −1.30332 0.548965i 0 1.39727 + 1.43095i 3.97294i 0 3.04833 −1.03555 2.63204i 0 2.18101 5.17800i
613.4 −1.30332 + 0.548965i 0 1.39727 1.43095i 3.97294i 0 3.04833 −1.03555 + 2.63204i 0 2.18101 + 5.17800i
613.5 −0.784673 1.17656i 0 −0.768577 + 1.84643i 2.31278i 0 2.94745 2.77551 0.544565i 0 −2.72112 + 1.81478i
613.6 −0.784673 + 1.17656i 0 −0.768577 1.84643i 2.31278i 0 2.94745 2.77551 + 0.544565i 0 −2.72112 1.81478i
613.7 −0.346935 1.37100i 0 −1.75927 + 0.951293i 1.24794i 0 −3.59705 1.91457 + 2.08192i 0 −1.71093 + 0.432954i
613.8 −0.346935 + 1.37100i 0 −1.75927 0.951293i 1.24794i 0 −3.59705 1.91457 2.08192i 0 −1.71093 0.432954i
613.9 0.155777 1.40561i 0 −1.95147 0.437924i 0.191498i 0 1.22930 −0.919543 + 2.67478i 0 0.269171 + 0.0298310i
613.10 0.155777 + 1.40561i 0 −1.95147 + 0.437924i 0.191498i 0 1.22930 −0.919543 2.67478i 0 0.269171 0.0298310i
613.11 0.285600 1.38507i 0 −1.83687 0.791155i 1.39571i 0 4.88695 −1.62042 + 2.31824i 0 −1.93317 0.398616i
613.12 0.285600 + 1.38507i 0 −1.83687 + 0.791155i 1.39571i 0 4.88695 −1.62042 2.31824i 0 −1.93317 + 0.398616i
613.13 1.40380 0.171324i 0 1.94130 0.481007i 1.04568i 0 −0.744897 2.64278 1.00783i 0 0.179150 + 1.46793i
613.14 1.40380 + 0.171324i 0 1.94130 + 0.481007i 1.04568i 0 −0.744897 2.64278 + 1.00783i 0 0.179150 1.46793i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 613.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.2.f.f 14
3.b odd 2 1 408.2.f.d 14
4.b odd 2 1 4896.2.f.f 14
8.b even 2 1 inner 1224.2.f.f 14
8.d odd 2 1 4896.2.f.f 14
12.b even 2 1 1632.2.f.d 14
24.f even 2 1 1632.2.f.d 14
24.h odd 2 1 408.2.f.d 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.2.f.d 14 3.b odd 2 1
408.2.f.d 14 24.h odd 2 1
1224.2.f.f 14 1.a even 1 1 trivial
1224.2.f.f 14 8.b even 2 1 inner
1632.2.f.d 14 12.b even 2 1
1632.2.f.d 14 24.f even 2 1
4896.2.f.f 14 4.b odd 2 1
4896.2.f.f 14 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1224,[χ])S_{2}^{\mathrm{new}}(1224, [\chi]):

T514+32T512+350T510+1724T58+4057T56+4476T54+1904T52+64 T_{5}^{14} + 32T_{5}^{12} + 350T_{5}^{10} + 1724T_{5}^{8} + 4057T_{5}^{6} + 4476T_{5}^{4} + 1904T_{5}^{2} + 64 Copy content Toggle raw display
T23712T23642T235+720T234+373T23312444T2321088T23+62848 T_{23}^{7} - 12T_{23}^{6} - 42T_{23}^{5} + 720T_{23}^{4} + 373T_{23}^{3} - 12444T_{23}^{2} - 1088T_{23} + 62848 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T14+4T13++128 T^{14} + 4 T^{13} + \cdots + 128 Copy content Toggle raw display
33 T14 T^{14} Copy content Toggle raw display
55 T14+32T12++64 T^{14} + 32 T^{12} + \cdots + 64 Copy content Toggle raw display
77 (T76T6++256)2 (T^{7} - 6 T^{6} + \cdots + 256)^{2} Copy content Toggle raw display
1111 T14+92T12++262144 T^{14} + 92 T^{12} + \cdots + 262144 Copy content Toggle raw display
1313 T14+108T12++11075584 T^{14} + 108 T^{12} + \cdots + 11075584 Copy content Toggle raw display
1717 (T1)14 (T - 1)^{14} Copy content Toggle raw display
1919 T14++125798656 T^{14} + \cdots + 125798656 Copy content Toggle raw display
2323 (T712T6++62848)2 (T^{7} - 12 T^{6} + \cdots + 62848)^{2} Copy content Toggle raw display
2929 T14++177209344 T^{14} + \cdots + 177209344 Copy content Toggle raw display
3131 (T72T6+1024)2 (T^{7} - 2 T^{6} + \cdots - 1024)^{2} Copy content Toggle raw display
3737 T14++268435456 T^{14} + \cdots + 268435456 Copy content Toggle raw display
4141 (T7+2T6+170584)2 (T^{7} + 2 T^{6} + \cdots - 170584)^{2} Copy content Toggle raw display
4343 T14+172T12++256 T^{14} + 172 T^{12} + \cdots + 256 Copy content Toggle raw display
4747 (T7+28T6++26624)2 (T^{7} + 28 T^{6} + \cdots + 26624)^{2} Copy content Toggle raw display
5353 T14++48020586496 T^{14} + \cdots + 48020586496 Copy content Toggle raw display
5959 T14+248T12++11075584 T^{14} + 248 T^{12} + \cdots + 11075584 Copy content Toggle raw display
6161 T14++3743481856 T^{14} + \cdots + 3743481856 Copy content Toggle raw display
6767 T14++84727164829696 T^{14} + \cdots + 84727164829696 Copy content Toggle raw display
7171 (T720T6++26624)2 (T^{7} - 20 T^{6} + \cdots + 26624)^{2} Copy content Toggle raw display
7373 (T7+2T6+8768)2 (T^{7} + 2 T^{6} + \cdots - 8768)^{2} Copy content Toggle raw display
7979 (T72T6++730624)2 (T^{7} - 2 T^{6} + \cdots + 730624)^{2} Copy content Toggle raw display
8383 T14++6964903936 T^{14} + \cdots + 6964903936 Copy content Toggle raw display
8989 (T7+2T6++1280704)2 (T^{7} + 2 T^{6} + \cdots + 1280704)^{2} Copy content Toggle raw display
9797 (T710T6++11072)2 (T^{7} - 10 T^{6} + \cdots + 11072)^{2} Copy content Toggle raw display
show more
show less