L(s) = 1 | + (−1.30 + 0.548i)2-s + (1.39 − 1.43i)4-s − 3.97i·5-s + 3.04·7-s + (−1.03 + 2.63i)8-s + (2.18 + 5.17i)10-s − 5.52i·11-s − 4.79i·13-s + (−3.97 + 1.67i)14-s + (−0.0952 − 3.99i)16-s + 17-s − 1.88i·19-s + (−5.68 − 5.55i)20-s + (3.03 + 7.19i)22-s + 2.95·23-s + ⋯ |
L(s) = 1 | + (−0.921 + 0.388i)2-s + (0.698 − 0.715i)4-s − 1.77i·5-s + 1.15·7-s + (−0.366 + 0.930i)8-s + (0.689 + 1.63i)10-s − 1.66i·11-s − 1.33i·13-s + (−1.06 + 0.447i)14-s + (−0.0238 − 0.999i)16-s + 0.242·17-s − 0.432i·19-s + (−1.27 − 1.24i)20-s + (0.646 + 1.53i)22-s + 0.616·23-s + ⋯ |
Λ(s)=(=(1224s/2ΓC(s)L(s)(−0.366+0.930i)Λ(2−s)
Λ(s)=(=(1224s/2ΓC(s+1/2)L(s)(−0.366+0.930i)Λ(1−s)
Degree: |
2 |
Conductor: |
1224
= 23⋅32⋅17
|
Sign: |
−0.366+0.930i
|
Analytic conductor: |
9.77368 |
Root analytic conductor: |
3.12629 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1224(613,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1224, ( :1/2), −0.366+0.930i)
|
Particular Values
L(1) |
≈ |
1.156140378 |
L(21) |
≈ |
1.156140378 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.30−0.548i)T |
| 3 | 1 |
| 17 | 1−T |
good | 5 | 1+3.97iT−5T2 |
| 7 | 1−3.04T+7T2 |
| 11 | 1+5.52iT−11T2 |
| 13 | 1+4.79iT−13T2 |
| 19 | 1+1.88iT−19T2 |
| 23 | 1−2.95T+23T2 |
| 29 | 1−8.15iT−29T2 |
| 31 | 1−0.314T+31T2 |
| 37 | 1−3.47iT−37T2 |
| 41 | 1−6.67T+41T2 |
| 43 | 1+0.0362iT−43T2 |
| 47 | 1+5.44T+47T2 |
| 53 | 1−6.18iT−53T2 |
| 59 | 1−2.22iT−59T2 |
| 61 | 1−8.22iT−61T2 |
| 67 | 1−9.92iT−67T2 |
| 71 | 1−5.84T+71T2 |
| 73 | 1−5.30T+73T2 |
| 79 | 1+11.3T+79T2 |
| 83 | 1+14.0iT−83T2 |
| 89 | 1+10.5T+89T2 |
| 97 | 1−3.72T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.066051799977121236531678365095, −8.577176640175170277643047891288, −8.186600400808549149388372397765, −7.37903256952464666458332967967, −5.88261450700795440487623652418, −5.39638598791969017917790347291, −4.67611463438695438985768206449, −3.04242623065013232909199565434, −1.37272046307045913689727966719, −0.72895845405003357304716028319,
1.85489704554639559712522504767, 2.33878817392372017523651888654, 3.68185882355856584619918696184, 4.61240051478577739191875874310, 6.22668762862457734089779926690, 6.97910581587020650951450854358, 7.50455251333977178442441594741, 8.204784087099369998107319129219, 9.544776820968218536922896081922, 9.845015037308118471190491083774