L(s) = 1 | + (−1.30 + 0.548i)2-s + (1.39 − 1.43i)4-s − 3.97i·5-s + 3.04·7-s + (−1.03 + 2.63i)8-s + (2.18 + 5.17i)10-s − 5.52i·11-s − 4.79i·13-s + (−3.97 + 1.67i)14-s + (−0.0952 − 3.99i)16-s + 17-s − 1.88i·19-s + (−5.68 − 5.55i)20-s + (3.03 + 7.19i)22-s + 2.95·23-s + ⋯ |
L(s) = 1 | + (−0.921 + 0.388i)2-s + (0.698 − 0.715i)4-s − 1.77i·5-s + 1.15·7-s + (−0.366 + 0.930i)8-s + (0.689 + 1.63i)10-s − 1.66i·11-s − 1.33i·13-s + (−1.06 + 0.447i)14-s + (−0.0238 − 0.999i)16-s + 0.242·17-s − 0.432i·19-s + (−1.27 − 1.24i)20-s + (0.646 + 1.53i)22-s + 0.616·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.366 + 0.930i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.366 + 0.930i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.156140378\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.156140378\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.30 - 0.548i)T \) |
| 3 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 5 | \( 1 + 3.97iT - 5T^{2} \) |
| 7 | \( 1 - 3.04T + 7T^{2} \) |
| 11 | \( 1 + 5.52iT - 11T^{2} \) |
| 13 | \( 1 + 4.79iT - 13T^{2} \) |
| 19 | \( 1 + 1.88iT - 19T^{2} \) |
| 23 | \( 1 - 2.95T + 23T^{2} \) |
| 29 | \( 1 - 8.15iT - 29T^{2} \) |
| 31 | \( 1 - 0.314T + 31T^{2} \) |
| 37 | \( 1 - 3.47iT - 37T^{2} \) |
| 41 | \( 1 - 6.67T + 41T^{2} \) |
| 43 | \( 1 + 0.0362iT - 43T^{2} \) |
| 47 | \( 1 + 5.44T + 47T^{2} \) |
| 53 | \( 1 - 6.18iT - 53T^{2} \) |
| 59 | \( 1 - 2.22iT - 59T^{2} \) |
| 61 | \( 1 - 8.22iT - 61T^{2} \) |
| 67 | \( 1 - 9.92iT - 67T^{2} \) |
| 71 | \( 1 - 5.84T + 71T^{2} \) |
| 73 | \( 1 - 5.30T + 73T^{2} \) |
| 79 | \( 1 + 11.3T + 79T^{2} \) |
| 83 | \( 1 + 14.0iT - 83T^{2} \) |
| 89 | \( 1 + 10.5T + 89T^{2} \) |
| 97 | \( 1 - 3.72T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.066051799977121236531678365095, −8.577176640175170277643047891288, −8.186600400808549149388372397765, −7.37903256952464666458332967967, −5.88261450700795440487623652418, −5.39638598791969017917790347291, −4.67611463438695438985768206449, −3.04242623065013232909199565434, −1.37272046307045913689727966719, −0.72895845405003357304716028319,
1.85489704554639559712522504767, 2.33878817392372017523651888654, 3.68185882355856584619918696184, 4.61240051478577739191875874310, 6.22668762862457734089779926690, 6.97910581587020650951450854358, 7.50455251333977178442441594741, 8.204784087099369998107319129219, 9.544776820968218536922896081922, 9.845015037308118471190491083774