Properties

Label 2-1224-1.1-c3-0-43
Degree $2$
Conductor $1224$
Sign $1$
Analytic cond. $72.2183$
Root an. cond. $8.49813$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.4·5-s + 35.5·7-s + 19.5·11-s + 62.5·13-s + 17·17-s + 78.5·19-s − 66.6·23-s + 84.7·25-s + 280.·29-s + 179.·31-s + 514.·35-s − 381.·37-s − 74.0·41-s − 22.2·43-s − 498.·47-s + 920.·49-s − 36.4·53-s + 282.·55-s − 748.·59-s − 730.·61-s + 906.·65-s − 781.·67-s + 674.·71-s − 906.·73-s + 694.·77-s + 1.07e3·79-s − 1.08e3·83-s + ⋯
L(s)  = 1  + 1.29·5-s + 1.91·7-s + 0.535·11-s + 1.33·13-s + 0.242·17-s + 0.948·19-s − 0.604·23-s + 0.677·25-s + 1.79·29-s + 1.04·31-s + 2.48·35-s − 1.69·37-s − 0.281·41-s − 0.0787·43-s − 1.54·47-s + 2.68·49-s − 0.0945·53-s + 0.693·55-s − 1.65·59-s − 1.53·61-s + 1.72·65-s − 1.42·67-s + 1.12·71-s − 1.45·73-s + 1.02·77-s + 1.52·79-s − 1.44·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1224\)    =    \(2^{3} \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(72.2183\)
Root analytic conductor: \(8.49813\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1224,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.290240557\)
\(L(\frac12)\) \(\approx\) \(4.290240557\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 - 17T \)
good5 \( 1 - 14.4T + 125T^{2} \)
7 \( 1 - 35.5T + 343T^{2} \)
11 \( 1 - 19.5T + 1.33e3T^{2} \)
13 \( 1 - 62.5T + 2.19e3T^{2} \)
19 \( 1 - 78.5T + 6.85e3T^{2} \)
23 \( 1 + 66.6T + 1.21e4T^{2} \)
29 \( 1 - 280.T + 2.43e4T^{2} \)
31 \( 1 - 179.T + 2.97e4T^{2} \)
37 \( 1 + 381.T + 5.06e4T^{2} \)
41 \( 1 + 74.0T + 6.89e4T^{2} \)
43 \( 1 + 22.2T + 7.95e4T^{2} \)
47 \( 1 + 498.T + 1.03e5T^{2} \)
53 \( 1 + 36.4T + 1.48e5T^{2} \)
59 \( 1 + 748.T + 2.05e5T^{2} \)
61 \( 1 + 730.T + 2.26e5T^{2} \)
67 \( 1 + 781.T + 3.00e5T^{2} \)
71 \( 1 - 674.T + 3.57e5T^{2} \)
73 \( 1 + 906.T + 3.89e5T^{2} \)
79 \( 1 - 1.07e3T + 4.93e5T^{2} \)
83 \( 1 + 1.08e3T + 5.71e5T^{2} \)
89 \( 1 + 964.T + 7.04e5T^{2} \)
97 \( 1 + 607.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.297092412736631486662195382949, −8.471539278631277743344947857664, −7.964735662564576066891385217255, −6.72030125624680212487078237032, −5.93283137369673671258501672171, −5.14812842646043215008605556516, −4.36451248665820205300744526274, −3.00752112668854588758544391002, −1.58232496752584933811990733923, −1.35341730592656442427451010955, 1.35341730592656442427451010955, 1.58232496752584933811990733923, 3.00752112668854588758544391002, 4.36451248665820205300744526274, 5.14812842646043215008605556516, 5.93283137369673671258501672171, 6.72030125624680212487078237032, 7.964735662564576066891385217255, 8.471539278631277743344947857664, 9.297092412736631486662195382949

Graph of the $Z$-function along the critical line