Properties

Label 1224.4.a.q
Level $1224$
Weight $4$
Character orbit 1224.a
Self dual yes
Analytic conductor $72.218$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,4,Mod(1,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1224.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2183378470\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 425x^{5} - 474x^{4} + 46988x^{3} + 195600x^{2} - 182556x - 1029768 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 13 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{5} + (\beta_{3} + 4) q^{7} + ( - \beta_{4} + \beta_{2} + 9) q^{11} + (\beta_{5} + \beta_{3} + 3) q^{13} + 17 q^{17} + (\beta_{3} - \beta_{2} - \beta_1 + 18) q^{19} + (\beta_{6} + \beta_{5} - 5 \beta_{4} + \cdots - 18) q^{23}+ \cdots + (3 \beta_{6} + 9 \beta_{5} + \cdots + 367) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{5} + 26 q^{7} + 65 q^{11} + 17 q^{13} + 119 q^{17} + 125 q^{19} - 107 q^{23} + 176 q^{25} + 6 q^{29} + 44 q^{31} + 58 q^{35} + 254 q^{37} - 219 q^{41} + 419 q^{43} - 300 q^{47} + 1171 q^{49}+ \cdots + 2536 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 425x^{5} - 474x^{4} + 46988x^{3} + 195600x^{2} - 182556x - 1029768 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 116393 \nu^{6} + 486006 \nu^{5} - 1013293 \nu^{4} - 244107038 \nu^{3} - 7563919092 \nu^{2} + \cdots + 265998537624 ) / 5010738780 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 162419 \nu^{6} + 1896210 \nu^{5} + 58743901 \nu^{4} - 562367422 \nu^{3} + \cdots + 267208252980 ) / 5010738780 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 114489 \nu^{6} + 700084 \nu^{5} + 46505055 \nu^{4} - 189333156 \nu^{3} - 4749925678 \nu^{2} + \cdots + 33287950488 ) / 1670246260 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 240655 \nu^{6} - 1231587 \nu^{5} - 100079438 \nu^{4} + 175008179 \nu^{3} + 10909856379 \nu^{2} + \cdots - 55466746578 ) / 2505369390 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 349808 \nu^{6} + 358560 \nu^{5} - 162492433 \nu^{4} - 378911174 \nu^{3} + 19465832685 \nu^{2} + \cdots - 148552022484 ) / 2505369390 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 1501148 \nu^{6} + 9817563 \nu^{5} + 592913611 \nu^{4} - 1881437179 \nu^{3} + \cdots + 512255618400 ) / 2505369390 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{6} - \beta_{5} + 12\beta_{4} - 5\beta_{2} + \beta _1 + 11 ) / 26 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} - \beta_{4} + 3\beta_{3} - 5\beta_{2} + 244 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 445\beta_{6} - 138\beta_{5} + 2137\beta_{4} - 494\beta_{3} - 1288\beta_{2} + 216\beta _1 + 15207 ) / 26 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 38\beta_{6} + 199\beta_{5} - 19\beta_{4} + 779\beta_{3} - 1407\beta_{2} + 198\beta _1 + 52604 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 107235 \beta_{6} + 2224 \beta_{5} + 438647 \beta_{4} - 130858 \beta_{3} - 345782 \beta_{2} + \cdots + 5241979 ) / 26 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 20090 \beta_{6} + 52535 \beta_{5} + 33185 \beta_{4} + 164075 \beta_{3} - 389935 \beta_{2} + \cdots + 12416728 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.21338
15.0295
−4.52275
−10.6413
16.7855
−14.1578
−2.70652
0 0 0 −16.9908 0 20.1237 0 0 0
1.2 0 0 0 −12.8726 0 21.2518 0 0 0
1.3 0 0 0 −8.70433 0 −35.2924 0 0 0
1.4 0 0 0 5.47546 0 −12.5140 0 0 0
1.5 0 0 0 5.92497 0 3.18485 0 0 0
1.6 0 0 0 14.4814 0 35.5447 0 0 0
1.7 0 0 0 15.6859 0 −6.29875 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1224.4.a.q yes 7
3.b odd 2 1 1224.4.a.p 7
4.b odd 2 1 2448.4.a.bw 7
12.b even 2 1 2448.4.a.bv 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1224.4.a.p 7 3.b odd 2 1
1224.4.a.q yes 7 1.a even 1 1 trivial
2448.4.a.bv 7 12.b even 2 1
2448.4.a.bw 7 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{7} - 3T_{5}^{6} - 521T_{5}^{5} + 1715T_{5}^{4} + 79488T_{5}^{3} - 274832T_{5}^{2} - 3265940T_{5} + 14029500 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1224))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} \) Copy content Toggle raw display
$3$ \( T^{7} \) Copy content Toggle raw display
$5$ \( T^{7} - 3 T^{6} + \cdots + 14029500 \) Copy content Toggle raw display
$7$ \( T^{7} - 26 T^{6} + \cdots + 134678560 \) Copy content Toggle raw display
$11$ \( T^{7} + \cdots - 46024334784 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots - 648750174768 \) Copy content Toggle raw display
$17$ \( (T - 17)^{7} \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots + 1455850962000 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots - 17364541460172 \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots + 9310477266144 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots - 761122651480320 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 16\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 12\!\cdots\!36 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots + 37575792956160 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots + 12\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots + 13\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots - 47\!\cdots\!84 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots + 15\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots + 16\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 20\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots + 86\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 81\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots - 35\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots - 38\!\cdots\!52 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots - 68\!\cdots\!00 \) Copy content Toggle raw display
show more
show less