L(s) = 1 | + 3·5-s + 26·7-s + 65·11-s + 17·13-s + 119·17-s + 125·19-s − 107·23-s − 345·25-s + 6·29-s + 44·31-s + 78·35-s + 254·37-s − 219·41-s + 419·43-s − 300·47-s − 277·49-s − 284·53-s + 195·55-s + 46·59-s + 638·61-s + 51·65-s + 796·67-s + 1.47e3·71-s + 1.71e3·73-s + 1.69e3·77-s + 1.13e3·79-s + 596·83-s + ⋯ |
L(s) = 1 | + 0.268·5-s + 1.40·7-s + 1.78·11-s + 0.362·13-s + 1.69·17-s + 1.50·19-s − 0.970·23-s − 2.75·25-s + 0.0384·29-s + 0.254·31-s + 0.376·35-s + 1.12·37-s − 0.834·41-s + 1.48·43-s − 0.931·47-s − 0.807·49-s − 0.736·53-s + 0.478·55-s + 0.101·59-s + 1.33·61-s + 0.0973·65-s + 1.45·67-s + 2.46·71-s + 2.74·73-s + 2.50·77-s + 1.61·79-s + 0.788·83-s + ⋯ |
Λ(s)=(=((221⋅314⋅177)s/2ΓC(s)7L(s)Λ(4−s)
Λ(s)=(=((221⋅314⋅177)s/2ΓC(s+3/2)7L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
53.87211781 |
L(21) |
≈ |
53.87211781 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 17 | (1−pT)7 |
good | 5 | 1−3T+354T2−107pT3+81988T4−120457T5+2699037pT6−88678p3T7+2699037p4T8−120457p6T9+81988p9T10−107p13T11+354p15T12−3p18T13+p21T14 |
| 7 | 1−26T+953T2−15508T3+36471pT4−947054T5−38567559T6+1035613336T7−38567559p3T8−947054p6T9+36471p10T10−15508p12T11+953p15T12−26p18T13+p21T14 |
| 11 | 1−65T+5460T2−199745T3+11724094T4−396579979T5+22768443575T6−700532534822T7+22768443575p3T8−396579979p6T9+11724094p9T10−199745p12T11+5460p15T12−65p18T13+p21T14 |
| 13 | 1−17T+3566T2−155977T3+13169472T4−445736523T5+31584320725T6−1462127060726T7+31584320725p3T8−445736523p6T9+13169472p9T10−155977p12T11+3566p15T12−17p18T13+p21T14 |
| 19 | 1−125T+32564T2−3925317T3+536291318T4−57835084551T5+5510555058279T6−503257770414814T7+5510555058279p3T8−57835084551p6T9+536291318p9T10−3925317p12T11+32564p15T12−125p18T13+p21T14 |
| 23 | 1+107T+53940T2+4243039T3+1375470422T4+87462702521T5+23069079907751T6+1240155430385582T7+23069079907751p3T8+87462702521p6T9+1375470422p9T10+4243039p12T11+53940p15T12+107p18T13+p21T14 |
| 29 | 1−6T+76371T2−5151988T3+2925956401T4−304123775298T5+90874281998963T6−8870279562105832T7+90874281998963p3T8−304123775298p6T9+2925956401p9T10−5151988p12T11+76371p15T12−6p18T13+p21T14 |
| 31 | 1−44T+49205T2−1421992T3+1232792589T4−133784265156T5+36888446996425T6−8534897219439056T7+36888446996425p3T8−133784265156p6T9+1232792589p9T10−1421992p12T11+49205p15T12−44p18T13+p21T14 |
| 37 | 1−254T+152571T2−26631556T3+12380828641T4−1512128030218T5+667910390260651T6−66410541275692936T7+667910390260651p3T8−1512128030218p6T9+12380828641p9T10−26631556p12T11+152571p15T12−254p18T13+p21T14 |
| 41 | 1+219T+185186T2+55111939T3+21969995724T4+6592395348305T5+2189011091591209T6+516453459461183394T7+2189011091591209p3T8+6592395348305p6T9+21969995724p9T10+55111939p12T11+185186p15T12+219p18T13+p21T14 |
| 43 | 1−419T+538868T2−171088339T3+121736298046T4−30470845203665T5+15529153543662711T6−3103403003686933362T7+15529153543662711p3T8−30470845203665p6T9+121736298046p9T10−171088339p12T11+538868p15T12−419p18T13+p21T14 |
| 47 | 1+300T+340969T2+35379512T3+44599263157T4+1380783473428T5+5820010719291693T6+319026518445721104T7+5820010719291693p3T8+1380783473428p6T9+44599263157p9T10+35379512p12T11+340969p15T12+300p18T13+p21T14 |
| 53 | 1+284T+338771T2−16036792T3+45743266021T4−10691740383356T5+11466639834495487T6−466766187276585232T7+11466639834495487p3T8−10691740383356p6T9+45743266021p9T10−16036792p12T11+338771p15T12+284p18T13+p21T14 |
| 59 | 1−46T+661433T2−14945332T3+220177235209T4+2689413526270T5+55620054516264137T6+1563781907253732712T7+55620054516264137p3T8+2689413526270p6T9+220177235209p9T10−14945332p12T11+661433p15T12−46p18T13+p21T14 |
| 61 | 1−638T+796371T2−259635300T3+284706012689T4−83685460081450T5+91585740973986003T6−24629039672906966472T7+91585740973986003p3T8−83685460081450p6T9+284706012689p9T10−259635300p12T11+796371p15T12−638p18T13+p21T14 |
| 67 | 1−796T+843445T2−474463576T3+434669122405T4−239244171464260T5+180700031996011913T6−84885796738878461648T7+180700031996011913p3T8−239244171464260p6T9+434669122405p9T10−474463576p12T11+843445p15T12−796p18T13+p21T14 |
| 71 | 1−1472T+1895245T2−1489924640T3+1058612301997T4−531767222771328T5+281647459552971457T6−13⋯40T7+281647459552971457p3T8−531767222771328p6T9+1058612301997p9T10−1489924640p12T11+1895245p15T12−1472p18T13+p21T14 |
| 73 | 1−1712T+2844231T2−2853363072T3+2641240205581T4−1911511071335504T5+1324276635663873627T6−82⋯32T7+1324276635663873627p3T8−1911511071335504p6T9+2641240205581p9T10−2853363072p12T11+2844231p15T12−1712p18T13+p21T14 |
| 79 | 1−1134T+1652497T2−995418940T3+1245056154849T4−761460794061514T5+864315482858125905T6−45⋯84T7+864315482858125905p3T8−761460794061514p6T9+1245056154849p9T10−995418940p12T11+1652497p15T12−1134p18T13+p21T14 |
| 83 | 1−596T+1446597T2+59437368T3+846468515397T4+243263035026356T5+803333180124238777T6+12916505499420261648T7+803333180124238777p3T8+243263035026356p6T9+846468515397p9T10+59437368p12T11+1446597p15T12−596p18T13+p21T14 |
| 89 | 1+694T+2622227T2+1063809756T3+3483368838233T4+1079225771839434T5+3386971173433246083T6+91⋯00T7+3386971173433246083p3T8+1079225771839434p6T9+3483368838233p9T10+1063809756p12T11+2622227p15T12+694p18T13+p21T14 |
| 97 | 1−2536T+7635023T2−12963867984T3+22468525613293T4−28310220541550360T5+35083068932946523139T6−33⋯12T7+35083068932946523139p3T8−28310220541550360p6T9+22468525613293p9T10−12963867984p12T11+7635023p15T12−2536p18T13+p21T14 |
show more | |
show less | |
L(s)=p∏ j=1∏14(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.21595960043040141022716850372, −4.06740319057999964056686889548, −3.87245850712892067336706079619, −3.83519101110307237682952681424, −3.50077139789920848953201241817, −3.38123459280745821858195512929, −3.34877416734750132792952413243, −3.18934545597494939537925709794, −3.00752112668854588758544391002, −2.90533768314707613129636335503, −2.90508832094880162166990744212, −2.16053694530025144304246942149, −2.15284170326904767680885823863, −2.05365447469452497049999579601, −2.02694975754609744388706509557, −1.87300580938177089986096016440, −1.81629275648447273797289424441, −1.58232496752584933811990733923, −1.35341730592656442427451010955, −0.894630577938067830945599931172, −0.862499973278605173857352109564, −0.74555441366124507945067814487, −0.71337030059210514093489454299, −0.59037598130494062200921180040, −0.26262498320072904688911710252,
0.26262498320072904688911710252, 0.59037598130494062200921180040, 0.71337030059210514093489454299, 0.74555441366124507945067814487, 0.862499973278605173857352109564, 0.894630577938067830945599931172, 1.35341730592656442427451010955, 1.58232496752584933811990733923, 1.81629275648447273797289424441, 1.87300580938177089986096016440, 2.02694975754609744388706509557, 2.05365447469452497049999579601, 2.15284170326904767680885823863, 2.16053694530025144304246942149, 2.90508832094880162166990744212, 2.90533768314707613129636335503, 3.00752112668854588758544391002, 3.18934545597494939537925709794, 3.34877416734750132792952413243, 3.38123459280745821858195512929, 3.50077139789920848953201241817, 3.83519101110307237682952681424, 3.87245850712892067336706079619, 4.06740319057999964056686889548, 4.21595960043040141022716850372
Plot not available for L-functions of degree greater than 10.