Properties

Label 1224.4.a.q.1.7
Level $1224$
Weight $4$
Character 1224.1
Self dual yes
Analytic conductor $72.218$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1224,4,Mod(1,1224)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1224, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1224.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1224 = 2^{3} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1224.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2183378470\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 425x^{5} - 474x^{4} + 46988x^{3} + 195600x^{2} - 182556x - 1029768 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 13 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.70652\) of defining polynomial
Character \(\chi\) \(=\) 1224.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.6859 q^{5} -6.29875 q^{7} +54.0846 q^{11} -74.4441 q^{13} +17.0000 q^{17} -57.4880 q^{19} +89.3410 q^{23} +121.047 q^{25} +186.208 q^{29} -31.6646 q^{31} -98.8014 q^{35} +318.267 q^{37} +338.338 q^{41} +177.552 q^{43} -227.242 q^{47} -303.326 q^{49} -90.8549 q^{53} +848.365 q^{55} +704.687 q^{59} -619.461 q^{61} -1167.72 q^{65} +261.990 q^{67} +70.2650 q^{71} +244.089 q^{73} -340.665 q^{77} -187.386 q^{79} +581.247 q^{83} +266.660 q^{85} +966.375 q^{89} +468.904 q^{91} -901.750 q^{95} -227.941 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{5} + 26 q^{7} + 65 q^{11} + 17 q^{13} + 119 q^{17} + 125 q^{19} - 107 q^{23} + 176 q^{25} + 6 q^{29} + 44 q^{31} + 58 q^{35} + 254 q^{37} - 219 q^{41} + 419 q^{43} - 300 q^{47} + 1171 q^{49}+ \cdots + 2536 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 15.6859 1.40299 0.701494 0.712676i \(-0.252517\pi\)
0.701494 + 0.712676i \(0.252517\pi\)
\(6\) 0 0
\(7\) −6.29875 −0.340100 −0.170050 0.985435i \(-0.554393\pi\)
−0.170050 + 0.985435i \(0.554393\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 54.0846 1.48247 0.741233 0.671248i \(-0.234241\pi\)
0.741233 + 0.671248i \(0.234241\pi\)
\(12\) 0 0
\(13\) −74.4441 −1.58824 −0.794118 0.607764i \(-0.792067\pi\)
−0.794118 + 0.607764i \(0.792067\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) −57.4880 −0.694140 −0.347070 0.937839i \(-0.612823\pi\)
−0.347070 + 0.937839i \(0.612823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 89.3410 0.809951 0.404976 0.914327i \(-0.367280\pi\)
0.404976 + 0.914327i \(0.367280\pi\)
\(24\) 0 0
\(25\) 121.047 0.968373
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 186.208 1.19234 0.596171 0.802857i \(-0.296688\pi\)
0.596171 + 0.802857i \(0.296688\pi\)
\(30\) 0 0
\(31\) −31.6646 −0.183456 −0.0917279 0.995784i \(-0.529239\pi\)
−0.0917279 + 0.995784i \(0.529239\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −98.8014 −0.477156
\(36\) 0 0
\(37\) 318.267 1.41413 0.707064 0.707150i \(-0.250019\pi\)
0.707064 + 0.707150i \(0.250019\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 338.338 1.28877 0.644385 0.764701i \(-0.277113\pi\)
0.644385 + 0.764701i \(0.277113\pi\)
\(42\) 0 0
\(43\) 177.552 0.629683 0.314842 0.949144i \(-0.398049\pi\)
0.314842 + 0.949144i \(0.398049\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −227.242 −0.705246 −0.352623 0.935765i \(-0.614710\pi\)
−0.352623 + 0.935765i \(0.614710\pi\)
\(48\) 0 0
\(49\) −303.326 −0.884332
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −90.8549 −0.235470 −0.117735 0.993045i \(-0.537563\pi\)
−0.117735 + 0.993045i \(0.537563\pi\)
\(54\) 0 0
\(55\) 848.365 2.07988
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 704.687 1.55496 0.777478 0.628910i \(-0.216499\pi\)
0.777478 + 0.628910i \(0.216499\pi\)
\(60\) 0 0
\(61\) −619.461 −1.30023 −0.650113 0.759837i \(-0.725279\pi\)
−0.650113 + 0.759837i \(0.725279\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1167.72 −2.22827
\(66\) 0 0
\(67\) 261.990 0.477718 0.238859 0.971054i \(-0.423227\pi\)
0.238859 + 0.971054i \(0.423227\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 70.2650 0.117450 0.0587248 0.998274i \(-0.481297\pi\)
0.0587248 + 0.998274i \(0.481297\pi\)
\(72\) 0 0
\(73\) 244.089 0.391349 0.195674 0.980669i \(-0.437310\pi\)
0.195674 + 0.980669i \(0.437310\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −340.665 −0.504187
\(78\) 0 0
\(79\) −187.386 −0.266868 −0.133434 0.991058i \(-0.542600\pi\)
−0.133434 + 0.991058i \(0.542600\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 581.247 0.768677 0.384339 0.923192i \(-0.374430\pi\)
0.384339 + 0.923192i \(0.374430\pi\)
\(84\) 0 0
\(85\) 266.660 0.340274
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 966.375 1.15096 0.575481 0.817815i \(-0.304815\pi\)
0.575481 + 0.817815i \(0.304815\pi\)
\(90\) 0 0
\(91\) 468.904 0.540160
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −901.750 −0.973870
\(96\) 0 0
\(97\) −227.941 −0.238597 −0.119299 0.992858i \(-0.538065\pi\)
−0.119299 + 0.992858i \(0.538065\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1036.42 −1.02106 −0.510532 0.859859i \(-0.670551\pi\)
−0.510532 + 0.859859i \(0.670551\pi\)
\(102\) 0 0
\(103\) 1928.83 1.84518 0.922588 0.385786i \(-0.126070\pi\)
0.922588 + 0.385786i \(0.126070\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1055.55 0.953686 0.476843 0.878989i \(-0.341781\pi\)
0.476843 + 0.878989i \(0.341781\pi\)
\(108\) 0 0
\(109\) −759.560 −0.667456 −0.333728 0.942669i \(-0.608307\pi\)
−0.333728 + 0.942669i \(0.608307\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1248.02 −1.03898 −0.519488 0.854478i \(-0.673877\pi\)
−0.519488 + 0.854478i \(0.673877\pi\)
\(114\) 0 0
\(115\) 1401.39 1.13635
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −107.079 −0.0824865
\(120\) 0 0
\(121\) 1594.15 1.19771
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −62.0127 −0.0443727
\(126\) 0 0
\(127\) 1853.29 1.29490 0.647452 0.762106i \(-0.275835\pi\)
0.647452 + 0.762106i \(0.275835\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1119.13 0.746402 0.373201 0.927751i \(-0.378260\pi\)
0.373201 + 0.927751i \(0.378260\pi\)
\(132\) 0 0
\(133\) 362.103 0.236077
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1420.65 −0.885943 −0.442972 0.896536i \(-0.646076\pi\)
−0.442972 + 0.896536i \(0.646076\pi\)
\(138\) 0 0
\(139\) −1538.66 −0.938904 −0.469452 0.882958i \(-0.655548\pi\)
−0.469452 + 0.882958i \(0.655548\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4026.28 −2.35451
\(144\) 0 0
\(145\) 2920.83 1.67284
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 131.493 0.0722973 0.0361487 0.999346i \(-0.488491\pi\)
0.0361487 + 0.999346i \(0.488491\pi\)
\(150\) 0 0
\(151\) 1521.08 0.819758 0.409879 0.912140i \(-0.365571\pi\)
0.409879 + 0.912140i \(0.365571\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −496.687 −0.257386
\(156\) 0 0
\(157\) −2501.05 −1.27137 −0.635686 0.771948i \(-0.719283\pi\)
−0.635686 + 0.771948i \(0.719283\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −562.736 −0.275465
\(162\) 0 0
\(163\) −1030.23 −0.495054 −0.247527 0.968881i \(-0.579618\pi\)
−0.247527 + 0.968881i \(0.579618\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1051.50 0.487230 0.243615 0.969872i \(-0.421667\pi\)
0.243615 + 0.969872i \(0.421667\pi\)
\(168\) 0 0
\(169\) 3344.92 1.52249
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 989.481 0.434849 0.217424 0.976077i \(-0.430234\pi\)
0.217424 + 0.976077i \(0.430234\pi\)
\(174\) 0 0
\(175\) −762.442 −0.329344
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −715.209 −0.298644 −0.149322 0.988789i \(-0.547709\pi\)
−0.149322 + 0.988789i \(0.547709\pi\)
\(180\) 0 0
\(181\) 2259.54 0.927901 0.463951 0.885861i \(-0.346432\pi\)
0.463951 + 0.885861i \(0.346432\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4992.29 1.98400
\(186\) 0 0
\(187\) 919.439 0.359551
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4718.85 1.78766 0.893832 0.448401i \(-0.148007\pi\)
0.893832 + 0.448401i \(0.148007\pi\)
\(192\) 0 0
\(193\) 2633.97 0.982369 0.491184 0.871056i \(-0.336564\pi\)
0.491184 + 0.871056i \(0.336564\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1073.63 −0.388287 −0.194144 0.980973i \(-0.562193\pi\)
−0.194144 + 0.980973i \(0.562193\pi\)
\(198\) 0 0
\(199\) 672.051 0.239399 0.119700 0.992810i \(-0.461807\pi\)
0.119700 + 0.992810i \(0.461807\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1172.88 −0.405516
\(204\) 0 0
\(205\) 5307.13 1.80813
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3109.22 −1.02904
\(210\) 0 0
\(211\) 457.238 0.149183 0.0745913 0.997214i \(-0.476235\pi\)
0.0745913 + 0.997214i \(0.476235\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2785.05 0.883438
\(216\) 0 0
\(217\) 199.447 0.0623934
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1265.55 −0.385204
\(222\) 0 0
\(223\) −6005.02 −1.80326 −0.901628 0.432512i \(-0.857627\pi\)
−0.901628 + 0.432512i \(0.857627\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4144.92 1.21193 0.605965 0.795492i \(-0.292787\pi\)
0.605965 + 0.795492i \(0.292787\pi\)
\(228\) 0 0
\(229\) −2493.77 −0.719621 −0.359810 0.933025i \(-0.617159\pi\)
−0.359810 + 0.933025i \(0.617159\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3122.25 0.877877 0.438939 0.898517i \(-0.355355\pi\)
0.438939 + 0.898517i \(0.355355\pi\)
\(234\) 0 0
\(235\) −3564.48 −0.989452
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6578.13 1.78035 0.890175 0.455618i \(-0.150582\pi\)
0.890175 + 0.455618i \(0.150582\pi\)
\(240\) 0 0
\(241\) 5839.79 1.56089 0.780444 0.625226i \(-0.214993\pi\)
0.780444 + 0.625226i \(0.214993\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4757.93 −1.24071
\(246\) 0 0
\(247\) 4279.64 1.10246
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2474.62 0.622298 0.311149 0.950361i \(-0.399286\pi\)
0.311149 + 0.950361i \(0.399286\pi\)
\(252\) 0 0
\(253\) 4831.97 1.20073
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2765.34 0.671195 0.335598 0.942005i \(-0.391062\pi\)
0.335598 + 0.942005i \(0.391062\pi\)
\(258\) 0 0
\(259\) −2004.68 −0.480945
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4940.35 1.15831 0.579154 0.815218i \(-0.303383\pi\)
0.579154 + 0.815218i \(0.303383\pi\)
\(264\) 0 0
\(265\) −1425.14 −0.330361
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2790.02 −0.632381 −0.316190 0.948696i \(-0.602404\pi\)
−0.316190 + 0.948696i \(0.602404\pi\)
\(270\) 0 0
\(271\) 8725.38 1.95583 0.977914 0.209009i \(-0.0670237\pi\)
0.977914 + 0.209009i \(0.0670237\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6546.76 1.43558
\(276\) 0 0
\(277\) 7629.92 1.65501 0.827505 0.561458i \(-0.189760\pi\)
0.827505 + 0.561458i \(0.189760\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4244.28 −0.901041 −0.450521 0.892766i \(-0.648762\pi\)
−0.450521 + 0.892766i \(0.648762\pi\)
\(282\) 0 0
\(283\) 553.651 0.116294 0.0581469 0.998308i \(-0.481481\pi\)
0.0581469 + 0.998308i \(0.481481\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2131.11 −0.438311
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7361.10 −1.46771 −0.733857 0.679304i \(-0.762282\pi\)
−0.733857 + 0.679304i \(0.762282\pi\)
\(294\) 0 0
\(295\) 11053.6 2.18158
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6650.91 −1.28639
\(300\) 0 0
\(301\) −1118.35 −0.214156
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9716.78 −1.82420
\(306\) 0 0
\(307\) −8081.25 −1.50235 −0.751175 0.660103i \(-0.770513\pi\)
−0.751175 + 0.660103i \(0.770513\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5463.27 −0.996120 −0.498060 0.867142i \(-0.665954\pi\)
−0.498060 + 0.867142i \(0.665954\pi\)
\(312\) 0 0
\(313\) −9631.37 −1.73929 −0.869644 0.493680i \(-0.835651\pi\)
−0.869644 + 0.493680i \(0.835651\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3960.05 −0.701636 −0.350818 0.936444i \(-0.614096\pi\)
−0.350818 + 0.936444i \(0.614096\pi\)
\(318\) 0 0
\(319\) 10071.0 1.76761
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −977.297 −0.168354
\(324\) 0 0
\(325\) −9011.20 −1.53800
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1431.34 0.239855
\(330\) 0 0
\(331\) −2928.79 −0.486347 −0.243174 0.969983i \(-0.578188\pi\)
−0.243174 + 0.969983i \(0.578188\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4109.53 0.670232
\(336\) 0 0
\(337\) −8128.46 −1.31390 −0.656952 0.753933i \(-0.728154\pi\)
−0.656952 + 0.753933i \(0.728154\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1712.57 −0.271967
\(342\) 0 0
\(343\) 4071.04 0.640862
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9798.14 1.51583 0.757913 0.652356i \(-0.226219\pi\)
0.757913 + 0.652356i \(0.226219\pi\)
\(348\) 0 0
\(349\) 9776.71 1.49953 0.749764 0.661706i \(-0.230167\pi\)
0.749764 + 0.661706i \(0.230167\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5073.34 −0.764947 −0.382474 0.923966i \(-0.624928\pi\)
−0.382474 + 0.923966i \(0.624928\pi\)
\(354\) 0 0
\(355\) 1102.17 0.164780
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10473.6 −1.53976 −0.769881 0.638187i \(-0.779684\pi\)
−0.769881 + 0.638187i \(0.779684\pi\)
\(360\) 0 0
\(361\) −3554.12 −0.518170
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3828.75 0.549057
\(366\) 0 0
\(367\) −12038.7 −1.71230 −0.856151 0.516726i \(-0.827150\pi\)
−0.856151 + 0.516726i \(0.827150\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 572.272 0.0800833
\(372\) 0 0
\(373\) −5671.52 −0.787293 −0.393647 0.919262i \(-0.628787\pi\)
−0.393647 + 0.919262i \(0.628787\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13862.1 −1.89372
\(378\) 0 0
\(379\) −13320.7 −1.80538 −0.902691 0.430289i \(-0.858412\pi\)
−0.902691 + 0.430289i \(0.858412\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7981.52 −1.06485 −0.532423 0.846478i \(-0.678719\pi\)
−0.532423 + 0.846478i \(0.678719\pi\)
\(384\) 0 0
\(385\) −5343.63 −0.707368
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8497.74 1.10759 0.553795 0.832653i \(-0.313179\pi\)
0.553795 + 0.832653i \(0.313179\pi\)
\(390\) 0 0
\(391\) 1518.80 0.196442
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2939.31 −0.374412
\(396\) 0 0
\(397\) −15542.3 −1.96485 −0.982425 0.186658i \(-0.940234\pi\)
−0.982425 + 0.186658i \(0.940234\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −77.1854 −0.00961210 −0.00480605 0.999988i \(-0.501530\pi\)
−0.00480605 + 0.999988i \(0.501530\pi\)
\(402\) 0 0
\(403\) 2357.24 0.291371
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17213.3 2.09640
\(408\) 0 0
\(409\) 3722.48 0.450037 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4438.64 −0.528841
\(414\) 0 0
\(415\) 9117.37 1.07844
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5305.35 0.618576 0.309288 0.950968i \(-0.399909\pi\)
0.309288 + 0.950968i \(0.399909\pi\)
\(420\) 0 0
\(421\) 6897.43 0.798480 0.399240 0.916846i \(-0.369274\pi\)
0.399240 + 0.916846i \(0.369274\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2057.79 0.234865
\(426\) 0 0
\(427\) 3901.83 0.442208
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7033.81 0.786094 0.393047 0.919518i \(-0.371421\pi\)
0.393047 + 0.919518i \(0.371421\pi\)
\(432\) 0 0
\(433\) −5805.81 −0.644364 −0.322182 0.946678i \(-0.604416\pi\)
−0.322182 + 0.946678i \(0.604416\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5136.04 −0.562220
\(438\) 0 0
\(439\) −15444.5 −1.67911 −0.839553 0.543278i \(-0.817183\pi\)
−0.839553 + 0.543278i \(0.817183\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5028.01 −0.539251 −0.269625 0.962965i \(-0.586900\pi\)
−0.269625 + 0.962965i \(0.586900\pi\)
\(444\) 0 0
\(445\) 15158.4 1.61478
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 260.448 0.0273749 0.0136874 0.999906i \(-0.495643\pi\)
0.0136874 + 0.999906i \(0.495643\pi\)
\(450\) 0 0
\(451\) 18298.9 1.91056
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7355.17 0.757837
\(456\) 0 0
\(457\) 11910.0 1.21910 0.609550 0.792748i \(-0.291350\pi\)
0.609550 + 0.792748i \(0.291350\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14793.3 1.49456 0.747281 0.664509i \(-0.231359\pi\)
0.747281 + 0.664509i \(0.231359\pi\)
\(462\) 0 0
\(463\) −17198.0 −1.72626 −0.863132 0.504978i \(-0.831501\pi\)
−0.863132 + 0.504978i \(0.831501\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4539.95 −0.449858 −0.224929 0.974375i \(-0.572215\pi\)
−0.224929 + 0.974375i \(0.572215\pi\)
\(468\) 0 0
\(469\) −1650.21 −0.162472
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9602.82 0.933485
\(474\) 0 0
\(475\) −6958.73 −0.672186
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2627.93 0.250674 0.125337 0.992114i \(-0.459999\pi\)
0.125337 + 0.992114i \(0.459999\pi\)
\(480\) 0 0
\(481\) −23693.1 −2.24597
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3575.46 −0.334749
\(486\) 0 0
\(487\) 2561.77 0.238367 0.119184 0.992872i \(-0.461972\pi\)
0.119184 + 0.992872i \(0.461972\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17310.7 1.59108 0.795542 0.605898i \(-0.207186\pi\)
0.795542 + 0.605898i \(0.207186\pi\)
\(492\) 0 0
\(493\) 3165.53 0.289185
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −442.581 −0.0399447
\(498\) 0 0
\(499\) −1072.95 −0.0962558 −0.0481279 0.998841i \(-0.515326\pi\)
−0.0481279 + 0.998841i \(0.515326\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3933.18 −0.348651 −0.174326 0.984688i \(-0.555775\pi\)
−0.174326 + 0.984688i \(0.555775\pi\)
\(504\) 0 0
\(505\) −16257.1 −1.43254
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2794.72 −0.243367 −0.121684 0.992569i \(-0.538829\pi\)
−0.121684 + 0.992569i \(0.538829\pi\)
\(510\) 0 0
\(511\) −1537.45 −0.133098
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 30255.4 2.58876
\(516\) 0 0
\(517\) −12290.3 −1.04550
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6193.76 0.520832 0.260416 0.965496i \(-0.416140\pi\)
0.260416 + 0.965496i \(0.416140\pi\)
\(522\) 0 0
\(523\) 1789.39 0.149607 0.0748034 0.997198i \(-0.476167\pi\)
0.0748034 + 0.997198i \(0.476167\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −538.298 −0.0444946
\(528\) 0 0
\(529\) −4185.19 −0.343979
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −25187.3 −2.04687
\(534\) 0 0
\(535\) 16557.3 1.33801
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16405.3 −1.31099
\(540\) 0 0
\(541\) −253.559 −0.0201504 −0.0100752 0.999949i \(-0.503207\pi\)
−0.0100752 + 0.999949i \(0.503207\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11914.4 −0.936432
\(546\) 0 0
\(547\) −15242.0 −1.19141 −0.595705 0.803203i \(-0.703127\pi\)
−0.595705 + 0.803203i \(0.703127\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10704.7 −0.827652
\(552\) 0 0
\(553\) 1180.30 0.0907619
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2150.93 −0.163623 −0.0818114 0.996648i \(-0.526071\pi\)
−0.0818114 + 0.996648i \(0.526071\pi\)
\(558\) 0 0
\(559\) −13217.7 −1.00009
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6861.49 −0.513636 −0.256818 0.966460i \(-0.582674\pi\)
−0.256818 + 0.966460i \(0.582674\pi\)
\(564\) 0 0
\(565\) −19576.3 −1.45767
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2803.64 −0.206564 −0.103282 0.994652i \(-0.532934\pi\)
−0.103282 + 0.994652i \(0.532934\pi\)
\(570\) 0 0
\(571\) −8201.92 −0.601121 −0.300560 0.953763i \(-0.597174\pi\)
−0.300560 + 0.953763i \(0.597174\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 10814.4 0.784335
\(576\) 0 0
\(577\) 4295.12 0.309893 0.154946 0.987923i \(-0.450480\pi\)
0.154946 + 0.987923i \(0.450480\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3661.13 −0.261427
\(582\) 0 0
\(583\) −4913.86 −0.349076
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22867.5 1.60791 0.803953 0.594693i \(-0.202726\pi\)
0.803953 + 0.594693i \(0.202726\pi\)
\(588\) 0 0
\(589\) 1820.34 0.127344
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19302.1 −1.33666 −0.668332 0.743863i \(-0.732991\pi\)
−0.668332 + 0.743863i \(0.732991\pi\)
\(594\) 0 0
\(595\) −1679.62 −0.115727
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2992.91 −0.204152 −0.102076 0.994777i \(-0.532548\pi\)
−0.102076 + 0.994777i \(0.532548\pi\)
\(600\) 0 0
\(601\) −1387.51 −0.0941723 −0.0470862 0.998891i \(-0.514994\pi\)
−0.0470862 + 0.998891i \(0.514994\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25005.6 1.68037
\(606\) 0 0
\(607\) −28444.9 −1.90205 −0.951024 0.309117i \(-0.899966\pi\)
−0.951024 + 0.309117i \(0.899966\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16916.8 1.12010
\(612\) 0 0
\(613\) −26059.3 −1.71700 −0.858502 0.512811i \(-0.828604\pi\)
−0.858502 + 0.512811i \(0.828604\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17412.1 −1.13612 −0.568058 0.822989i \(-0.692305\pi\)
−0.568058 + 0.822989i \(0.692305\pi\)
\(618\) 0 0
\(619\) −20574.9 −1.33599 −0.667994 0.744166i \(-0.732847\pi\)
−0.667994 + 0.744166i \(0.732847\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6086.95 −0.391442
\(624\) 0 0
\(625\) −16103.5 −1.03063
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5410.53 0.342976
\(630\) 0 0
\(631\) −7927.70 −0.500153 −0.250077 0.968226i \(-0.580456\pi\)
−0.250077 + 0.968226i \(0.580456\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 29070.4 1.81673
\(636\) 0 0
\(637\) 22580.8 1.40453
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20190.2 1.24409 0.622047 0.782980i \(-0.286301\pi\)
0.622047 + 0.782980i \(0.286301\pi\)
\(642\) 0 0
\(643\) 1871.36 0.114773 0.0573865 0.998352i \(-0.481723\pi\)
0.0573865 + 0.998352i \(0.481723\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9629.86 −0.585145 −0.292573 0.956243i \(-0.594511\pi\)
−0.292573 + 0.956243i \(0.594511\pi\)
\(648\) 0 0
\(649\) 38112.7 2.30517
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7956.02 0.476789 0.238395 0.971168i \(-0.423379\pi\)
0.238395 + 0.971168i \(0.423379\pi\)
\(654\) 0 0
\(655\) 17554.5 1.04719
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −31802.1 −1.87987 −0.939936 0.341352i \(-0.889115\pi\)
−0.939936 + 0.341352i \(0.889115\pi\)
\(660\) 0 0
\(661\) −10768.1 −0.633632 −0.316816 0.948487i \(-0.602614\pi\)
−0.316816 + 0.948487i \(0.602614\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5679.90 0.331213
\(666\) 0 0
\(667\) 16636.0 0.965739
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −33503.3 −1.92754
\(672\) 0 0
\(673\) 15170.9 0.868938 0.434469 0.900687i \(-0.356936\pi\)
0.434469 + 0.900687i \(0.356936\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1102.92 0.0626127 0.0313064 0.999510i \(-0.490033\pi\)
0.0313064 + 0.999510i \(0.490033\pi\)
\(678\) 0 0
\(679\) 1435.74 0.0811470
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2140.82 0.119936 0.0599678 0.998200i \(-0.480900\pi\)
0.0599678 + 0.998200i \(0.480900\pi\)
\(684\) 0 0
\(685\) −22284.1 −1.24297
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6763.61 0.373981
\(690\) 0 0
\(691\) 28162.7 1.55045 0.775223 0.631687i \(-0.217637\pi\)
0.775223 + 0.631687i \(0.217637\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24135.3 −1.31727
\(696\) 0 0
\(697\) 5751.75 0.312573
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17802.0 −0.959160 −0.479580 0.877498i \(-0.659211\pi\)
−0.479580 + 0.877498i \(0.659211\pi\)
\(702\) 0 0
\(703\) −18296.5 −0.981602
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6528.13 0.347264
\(708\) 0 0
\(709\) 7646.66 0.405044 0.202522 0.979278i \(-0.435086\pi\)
0.202522 + 0.979278i \(0.435086\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2828.95 −0.148590
\(714\) 0 0
\(715\) −63155.7 −3.30334
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11522.7 0.597671 0.298835 0.954305i \(-0.403402\pi\)
0.298835 + 0.954305i \(0.403402\pi\)
\(720\) 0 0
\(721\) −12149.2 −0.627545
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 22539.8 1.15463
\(726\) 0 0
\(727\) 1027.74 0.0524301 0.0262151 0.999656i \(-0.491655\pi\)
0.0262151 + 0.999656i \(0.491655\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3018.38 0.152721
\(732\) 0 0
\(733\) −8097.01 −0.408008 −0.204004 0.978970i \(-0.565396\pi\)
−0.204004 + 0.978970i \(0.565396\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14169.6 0.708201
\(738\) 0 0
\(739\) 31129.4 1.54955 0.774773 0.632240i \(-0.217864\pi\)
0.774773 + 0.632240i \(0.217864\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31420.7 −1.55143 −0.775716 0.631083i \(-0.782611\pi\)
−0.775716 + 0.631083i \(0.782611\pi\)
\(744\) 0 0
\(745\) 2062.58 0.101432
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6648.67 −0.324349
\(750\) 0 0
\(751\) −9157.73 −0.444967 −0.222484 0.974936i \(-0.571416\pi\)
−0.222484 + 0.974936i \(0.571416\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 23859.4 1.15011
\(756\) 0 0
\(757\) 14631.0 0.702474 0.351237 0.936287i \(-0.385761\pi\)
0.351237 + 0.936287i \(0.385761\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17408.4 −0.829244 −0.414622 0.909994i \(-0.636086\pi\)
−0.414622 + 0.909994i \(0.636086\pi\)
\(762\) 0 0
\(763\) 4784.28 0.227002
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −52459.7 −2.46964
\(768\) 0 0
\(769\) −9361.21 −0.438978 −0.219489 0.975615i \(-0.570439\pi\)
−0.219489 + 0.975615i \(0.570439\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13639.0 −0.634622 −0.317311 0.948322i \(-0.602780\pi\)
−0.317311 + 0.948322i \(0.602780\pi\)
\(774\) 0 0
\(775\) −3832.89 −0.177654
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −19450.4 −0.894587
\(780\) 0 0
\(781\) 3800.26 0.174115
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −39231.1 −1.78372
\(786\) 0 0
\(787\) −26004.1 −1.17782 −0.588912 0.808197i \(-0.700444\pi\)
−0.588912 + 0.808197i \(0.700444\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7860.99 0.353356
\(792\) 0 0
\(793\) 46115.2 2.06507
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13799.1 −0.613285 −0.306643 0.951825i \(-0.599206\pi\)
−0.306643 + 0.951825i \(0.599206\pi\)
\(798\) 0 0
\(799\) −3863.11 −0.171047
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13201.5 0.580161
\(804\) 0 0
\(805\) −8827.01 −0.386474
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43491.0 1.89006 0.945031 0.326980i \(-0.106031\pi\)
0.945031 + 0.326980i \(0.106031\pi\)
\(810\) 0 0
\(811\) 36562.9 1.58311 0.791553 0.611101i \(-0.209273\pi\)
0.791553 + 0.611101i \(0.209273\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16160.0 −0.694554
\(816\) 0 0
\(817\) −10207.1 −0.437089
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31722.8 −1.34852 −0.674258 0.738496i \(-0.735537\pi\)
−0.674258 + 0.738496i \(0.735537\pi\)
\(822\) 0 0
\(823\) −27119.8 −1.14865 −0.574324 0.818628i \(-0.694735\pi\)
−0.574324 + 0.818628i \(0.694735\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22931.8 0.964227 0.482113 0.876109i \(-0.339869\pi\)
0.482113 + 0.876109i \(0.339869\pi\)
\(828\) 0 0
\(829\) −5879.04 −0.246306 −0.123153 0.992388i \(-0.539301\pi\)
−0.123153 + 0.992388i \(0.539301\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5156.54 −0.214482
\(834\) 0 0
\(835\) 16493.7 0.683577
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2880.69 −0.118537 −0.0592684 0.998242i \(-0.518877\pi\)
−0.0592684 + 0.998242i \(0.518877\pi\)
\(840\) 0 0
\(841\) 10284.3 0.421680
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 52468.0 2.13604
\(846\) 0 0
\(847\) −10041.1 −0.407341
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 28434.2 1.14537
\(852\) 0 0
\(853\) −11673.4 −0.468569 −0.234284 0.972168i \(-0.575275\pi\)
−0.234284 + 0.972168i \(0.575275\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1369.67 −0.0545940 −0.0272970 0.999627i \(-0.508690\pi\)
−0.0272970 + 0.999627i \(0.508690\pi\)
\(858\) 0 0
\(859\) 7559.18 0.300251 0.150126 0.988667i \(-0.452032\pi\)
0.150126 + 0.988667i \(0.452032\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28575.6 1.12714 0.563572 0.826067i \(-0.309427\pi\)
0.563572 + 0.826067i \(0.309427\pi\)
\(864\) 0 0
\(865\) 15520.9 0.610087
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −10134.7 −0.395623
\(870\) 0 0
\(871\) −19503.6 −0.758729
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 390.602 0.0150912
\(876\) 0 0
\(877\) 26907.7 1.03604 0.518021 0.855368i \(-0.326669\pi\)
0.518021 + 0.855368i \(0.326669\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 31659.4 1.21071 0.605353 0.795957i \(-0.293032\pi\)
0.605353 + 0.795957i \(0.293032\pi\)
\(882\) 0 0
\(883\) −2895.58 −0.110355 −0.0551777 0.998477i \(-0.517573\pi\)
−0.0551777 + 0.998477i \(0.517573\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17577.7 −0.665392 −0.332696 0.943034i \(-0.607958\pi\)
−0.332696 + 0.943034i \(0.607958\pi\)
\(888\) 0 0
\(889\) −11673.4 −0.440397
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13063.7 0.489540
\(894\) 0 0
\(895\) −11218.7 −0.418993
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5896.20 −0.218742
\(900\) 0 0
\(901\) −1544.53 −0.0571098
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 35442.8 1.30183
\(906\) 0 0
\(907\) −9827.12 −0.359762 −0.179881 0.983688i \(-0.557571\pi\)
−0.179881 + 0.983688i \(0.557571\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −31873.7 −1.15919 −0.579595 0.814904i \(-0.696789\pi\)
−0.579595 + 0.814904i \(0.696789\pi\)
\(912\) 0 0
\(913\) 31436.6 1.13954
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7049.10 −0.253852
\(918\) 0 0
\(919\) 27402.8 0.983609 0.491804 0.870706i \(-0.336338\pi\)
0.491804 + 0.870706i \(0.336338\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5230.81 −0.186538
\(924\) 0 0
\(925\) 38525.1 1.36940
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 19977.0 0.705514 0.352757 0.935715i \(-0.385244\pi\)
0.352757 + 0.935715i \(0.385244\pi\)
\(930\) 0 0
\(931\) 17437.6 0.613850
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14422.2 0.504445
\(936\) 0 0
\(937\) 27416.5 0.955878 0.477939 0.878393i \(-0.341384\pi\)
0.477939 + 0.878393i \(0.341384\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3729.87 −0.129214 −0.0646070 0.997911i \(-0.520579\pi\)
−0.0646070 + 0.997911i \(0.520579\pi\)
\(942\) 0 0
\(943\) 30227.5 1.04384
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5509.23 0.189045 0.0945226 0.995523i \(-0.469868\pi\)
0.0945226 + 0.995523i \(0.469868\pi\)
\(948\) 0 0
\(949\) −18171.0 −0.621554
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −26354.9 −0.895822 −0.447911 0.894078i \(-0.647832\pi\)
−0.447911 + 0.894078i \(0.647832\pi\)
\(954\) 0 0
\(955\) 74019.3 2.50807
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8948.31 0.301310
\(960\) 0 0
\(961\) −28788.4 −0.966344
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 41316.1 1.37825
\(966\) 0 0
\(967\) 26496.4 0.881146 0.440573 0.897717i \(-0.354775\pi\)
0.440573 + 0.897717i \(0.354775\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8592.79 −0.283992 −0.141996 0.989867i \(-0.545352\pi\)
−0.141996 + 0.989867i \(0.545352\pi\)
\(972\) 0 0
\(973\) 9691.65 0.319322
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18182.1 0.595389 0.297695 0.954661i \(-0.403782\pi\)
0.297695 + 0.954661i \(0.403782\pi\)
\(978\) 0 0
\(979\) 52266.0 1.70626
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3369.08 −0.109315 −0.0546577 0.998505i \(-0.517407\pi\)
−0.0546577 + 0.998505i \(0.517407\pi\)
\(984\) 0 0
\(985\) −16840.7 −0.544762
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15862.6 0.510013
\(990\) 0 0
\(991\) −30421.4 −0.975144 −0.487572 0.873083i \(-0.662117\pi\)
−0.487572 + 0.873083i \(0.662117\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10541.7 0.335874
\(996\) 0 0
\(997\) 40464.6 1.28538 0.642691 0.766125i \(-0.277818\pi\)
0.642691 + 0.766125i \(0.277818\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1224.4.a.q.1.7 yes 7
3.2 odd 2 1224.4.a.p.1.1 7
4.3 odd 2 2448.4.a.bw.1.7 7
12.11 even 2 2448.4.a.bv.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1224.4.a.p.1.1 7 3.2 odd 2
1224.4.a.q.1.7 yes 7 1.1 even 1 trivial
2448.4.a.bv.1.1 7 12.11 even 2
2448.4.a.bw.1.7 7 4.3 odd 2