L(s) = 1 | + (0.866 − 0.5i)4-s + (0.866 + 0.5i)9-s + (−1 − 1.73i)11-s + (0.499 − 0.866i)16-s + 2i·29-s + 0.999·36-s + (−1.73 − 0.999i)44-s − 0.999i·64-s − 2·71-s + (1.73 + i)79-s + (0.499 + 0.866i)81-s − 1.99i·99-s + (−1.73 + i)109-s + (1 + 1.73i)116-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)4-s + (0.866 + 0.5i)9-s + (−1 − 1.73i)11-s + (0.499 − 0.866i)16-s + 2i·29-s + 0.999·36-s + (−1.73 − 0.999i)44-s − 0.999i·64-s − 2·71-s + (1.73 + i)79-s + (0.499 + 0.866i)81-s − 1.99i·99-s + (−1.73 + i)109-s + (1 + 1.73i)116-s + ⋯ |
Λ(s)=(=(1225s/2ΓC(s)L(s)(0.813+0.581i)Λ(1−s)
Λ(s)=(=(1225s/2ΓC(s)L(s)(0.813+0.581i)Λ(1−s)
Degree: |
2 |
Conductor: |
1225
= 52⋅72
|
Sign: |
0.813+0.581i
|
Analytic conductor: |
0.611354 |
Root analytic conductor: |
0.781891 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1225(618,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1225, ( :0), 0.813+0.581i)
|
Particular Values
L(21) |
≈ |
1.297508695 |
L(21) |
≈ |
1.297508695 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1+(−0.866+0.5i)T2 |
| 3 | 1+(−0.866−0.5i)T2 |
| 11 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 13 | 1+iT2 |
| 17 | 1+(0.866+0.5i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.866−0.5i)T2 |
| 29 | 1−2iT−T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+(−0.866+0.5i)T2 |
| 41 | 1+T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.866+0.5i)T2 |
| 53 | 1+(−0.866−0.5i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(0.866+0.5i)T2 |
| 71 | 1+2T+T2 |
| 73 | 1+(−0.866−0.5i)T2 |
| 79 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 83 | 1+iT2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.10842161674811469590070569971, −9.010575697299198735540361607344, −8.102313856268269707268245424081, −7.36073443779792664314877648857, −6.52911788623658706797619758861, −5.61815753668855137836644432381, −4.97329414844732307864484567044, −3.49584534378517935283434112741, −2.58310175237063391028245005097, −1.29453476774021505052523383517,
1.80357785514661503823830905434, 2.66488087310503864355433301927, 3.94965068992227505423442553231, 4.73532175608862269840415202864, 5.98991009960892986026453138808, 6.88038970613669655230438498838, 7.50046853287663568076180233908, 8.070986283820880948501133195982, 9.373894503014709617359903289575, 10.06624578909594598452719613275