Properties

Label 1225.1.q.a
Level 12251225
Weight 11
Character orbit 1225.q
Analytic conductor 0.6110.611
Analytic rank 00
Dimension 44
Projective image D2D_{2}
CM/RM discs -7, -35, 5
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,1,Mod(18,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.18");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1225=5272 1225 = 5^{2} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1225.q (of order 1212, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6113546404750.611354640475
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(5,7)\Q(\sqrt{5}, \sqrt{-7})
Artin image: C3×OD16C_3\times \OD_{16}
Artin field: Galois closure of Q[x]/(x24)\mathbb{Q}[x]/(x^{24} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ12q4ζ125q9+2ζ124q11+ζ122q162ζ123q29+q36+2ζ125q44+ζ123q642q712ζ125q79++2ζ123q99+O(q100) q + \zeta_{12} q^{4} - \zeta_{12}^{5} q^{9} + 2 \zeta_{12}^{4} q^{11} + \zeta_{12}^{2} q^{16} - 2 \zeta_{12}^{3} q^{29} + q^{36} + 2 \zeta_{12}^{5} q^{44} + \zeta_{12}^{3} q^{64} - 2 q^{71} - 2 \zeta_{12}^{5} q^{79} + \cdots + 2 \zeta_{12}^{3} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q11+2q16+4q368q71+2q81+O(q100) 4 q - 4 q^{11} + 2 q^{16} + 4 q^{36} - 8 q^{71} + 2 q^{81}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1225Z)×\left(\mathbb{Z}/1225\mathbb{Z}\right)^\times.

nn 101101 11771177
χ(n)\chi(n) ζ122-\zeta_{12}^{2} ζ123\zeta_{12}^{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
18.1
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 0 −0.866025 0.500000i 0 0 0 0 −0.866025 + 0.500000i 0
557.1 0 0 0.866025 + 0.500000i 0 0 0 0 0.866025 0.500000i 0
618.1 0 0 0.866025 0.500000i 0 0 0 0 0.866025 + 0.500000i 0
1157.1 0 0 −0.866025 + 0.500000i 0 0 0 0 −0.866025 0.500000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 RM by Q(5)\Q(\sqrt{5})
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
35.c odd 2 1 CM by Q(35)\Q(\sqrt{-35})
5.c odd 4 2 inner
7.c even 3 1 inner
7.d odd 6 1 inner
35.f even 4 2 inner
35.i odd 6 1 inner
35.j even 6 1 inner
35.k even 12 2 inner
35.l odd 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1225.1.q.a 4
5.b even 2 1 RM 1225.1.q.a 4
5.c odd 4 2 inner 1225.1.q.a 4
7.b odd 2 1 CM 1225.1.q.a 4
7.c even 3 1 1225.1.g.a 2
7.c even 3 1 inner 1225.1.q.a 4
7.d odd 6 1 1225.1.g.a 2
7.d odd 6 1 inner 1225.1.q.a 4
35.c odd 2 1 CM 1225.1.q.a 4
35.f even 4 2 inner 1225.1.q.a 4
35.i odd 6 1 1225.1.g.a 2
35.i odd 6 1 inner 1225.1.q.a 4
35.j even 6 1 1225.1.g.a 2
35.j even 6 1 inner 1225.1.q.a 4
35.k even 12 2 1225.1.g.a 2
35.k even 12 2 inner 1225.1.q.a 4
35.l odd 12 2 1225.1.g.a 2
35.l odd 12 2 inner 1225.1.q.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1225.1.g.a 2 7.c even 3 1
1225.1.g.a 2 7.d odd 6 1
1225.1.g.a 2 35.i odd 6 1
1225.1.g.a 2 35.j even 6 1
1225.1.g.a 2 35.k even 12 2
1225.1.g.a 2 35.l odd 12 2
1225.1.q.a 4 1.a even 1 1 trivial
1225.1.q.a 4 5.b even 2 1 RM
1225.1.q.a 4 5.c odd 4 2 inner
1225.1.q.a 4 7.b odd 2 1 CM
1225.1.q.a 4 7.c even 3 1 inner
1225.1.q.a 4 7.d odd 6 1 inner
1225.1.q.a 4 35.c odd 2 1 CM
1225.1.q.a 4 35.f even 4 2 inner
1225.1.q.a 4 35.i odd 6 1 inner
1225.1.q.a 4 35.j even 6 1 inner
1225.1.q.a 4 35.k even 12 2 inner
1225.1.q.a 4 35.l odd 12 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2 T_{2} acting on S1new(1225,[χ])S_{1}^{\mathrm{new}}(1225, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less