L(s) = 1 | − 2.23·3-s − 2·4-s + 2.00·9-s − 3·11-s + 4.47·12-s + 6.70·13-s + 4·16-s + 2.23·17-s + 2.23·27-s − 9·29-s + 6.70·33-s − 4.00·36-s − 15.0·39-s + 6·44-s − 11.1·47-s − 8.94·48-s − 5.00·51-s − 13.4·52-s − 8·64-s − 4.47·68-s − 12·71-s + 13.4·73-s − 79-s − 11·81-s − 8.94·83-s + 20.1·87-s − 6.70·97-s + ⋯ |
L(s) = 1 | − 1.29·3-s − 4-s + 0.666·9-s − 0.904·11-s + 1.29·12-s + 1.86·13-s + 16-s + 0.542·17-s + 0.430·27-s − 1.67·29-s + 1.16·33-s − 0.666·36-s − 2.40·39-s + 0.904·44-s − 1.63·47-s − 1.29·48-s − 0.700·51-s − 1.86·52-s − 64-s − 0.542·68-s − 1.42·71-s + 1.57·73-s − 0.112·79-s − 1.22·81-s − 0.981·83-s + 2.15·87-s − 0.681·97-s + ⋯ |
Λ(s)=(=(1225s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1225s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
good | 2 | 1+2T2 |
| 3 | 1+2.23T+3T2 |
| 11 | 1+3T+11T2 |
| 13 | 1−6.70T+13T2 |
| 17 | 1−2.23T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+23T2 |
| 29 | 1+9T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+37T2 |
| 41 | 1+41T2 |
| 43 | 1+43T2 |
| 47 | 1+11.1T+47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1+61T2 |
| 67 | 1+67T2 |
| 71 | 1+12T+71T2 |
| 73 | 1−13.4T+73T2 |
| 79 | 1+T+79T2 |
| 83 | 1+8.94T+83T2 |
| 89 | 1+89T2 |
| 97 | 1+6.70T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.388184580540948124959442289420, −8.479529323929461630967714085177, −7.80297977430087953436193082919, −6.56743779994051427602049302435, −5.67600780303091926205299634625, −5.32168678165937101325745264997, −4.23446721686868124359633520296, −3.30678461771693015492849077192, −1.30915866113986890771182369008, 0,
1.30915866113986890771182369008, 3.30678461771693015492849077192, 4.23446721686868124359633520296, 5.32168678165937101325745264997, 5.67600780303091926205299634625, 6.56743779994051427602049302435, 7.80297977430087953436193082919, 8.479529323929461630967714085177, 9.388184580540948124959442289420