Properties

Label 1225.2.a.q.1.1
Level $1225$
Weight $2$
Character 1225.1
Self dual yes
Analytic conductor $9.782$
Analytic rank $1$
Dimension $2$
CM discriminant -35
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78167424761\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 245)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{3} -2.00000 q^{4} +2.00000 q^{9} -3.00000 q^{11} +4.47214 q^{12} +6.70820 q^{13} +4.00000 q^{16} +2.23607 q^{17} +2.23607 q^{27} -9.00000 q^{29} +6.70820 q^{33} -4.00000 q^{36} -15.0000 q^{39} +6.00000 q^{44} -11.1803 q^{47} -8.94427 q^{48} -5.00000 q^{51} -13.4164 q^{52} -8.00000 q^{64} -4.47214 q^{68} -12.0000 q^{71} +13.4164 q^{73} -1.00000 q^{79} -11.0000 q^{81} -8.94427 q^{83} +20.1246 q^{87} -6.70820 q^{97} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 4 q^{9} - 6 q^{11} + 8 q^{16} - 18 q^{29} - 8 q^{36} - 30 q^{39} + 12 q^{44} - 10 q^{51} - 16 q^{64} - 24 q^{71} - 2 q^{79} - 22 q^{81} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) −2.23607 −1.29099 −0.645497 0.763763i \(-0.723350\pi\)
−0.645497 + 0.763763i \(0.723350\pi\)
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 4.47214 1.29099
\(13\) 6.70820 1.86052 0.930261 0.366900i \(-0.119581\pi\)
0.930261 + 0.366900i \(0.119581\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 2.23607 0.542326 0.271163 0.962533i \(-0.412592\pi\)
0.271163 + 0.962533i \(0.412592\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.23607 0.430331
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 6.70820 1.16775
\(34\) 0 0
\(35\) 0 0
\(36\) −4.00000 −0.666667
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) −15.0000 −2.40192
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 6.00000 0.904534
\(45\) 0 0
\(46\) 0 0
\(47\) −11.1803 −1.63082 −0.815410 0.578884i \(-0.803489\pi\)
−0.815410 + 0.578884i \(0.803489\pi\)
\(48\) −8.94427 −1.29099
\(49\) 0 0
\(50\) 0 0
\(51\) −5.00000 −0.700140
\(52\) −13.4164 −1.86052
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) −4.47214 −0.542326
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 13.4164 1.57027 0.785136 0.619324i \(-0.212593\pi\)
0.785136 + 0.619324i \(0.212593\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −8.94427 −0.981761 −0.490881 0.871227i \(-0.663325\pi\)
−0.490881 + 0.871227i \(0.663325\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 20.1246 2.15758
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.70820 −0.681115 −0.340557 0.940224i \(-0.610616\pi\)
−0.340557 + 0.940224i \(0.610616\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −20.1246 −1.98294 −0.991468 0.130347i \(-0.958391\pi\)
−0.991468 + 0.130347i \(0.958391\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −4.47214 −0.430331
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 18.0000 1.67126
\(117\) 13.4164 1.24035
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −13.4164 −1.16775
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 25.0000 2.10538
\(142\) 0 0
\(143\) −20.1246 −1.68290
\(144\) 8.00000 0.666667
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −17.0000 −1.38344 −0.691720 0.722166i \(-0.743147\pi\)
−0.691720 + 0.722166i \(0.743147\pi\)
\(152\) 0 0
\(153\) 4.47214 0.361551
\(154\) 0 0
\(155\) 0 0
\(156\) 30.0000 2.40192
\(157\) −13.4164 −1.07075 −0.535373 0.844616i \(-0.679829\pi\)
−0.535373 + 0.844616i \(0.679829\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 24.5967 1.90335 0.951677 0.307102i \(-0.0993591\pi\)
0.951677 + 0.307102i \(0.0993591\pi\)
\(168\) 0 0
\(169\) 32.0000 2.46154
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.1803 0.850026 0.425013 0.905187i \(-0.360270\pi\)
0.425013 + 0.905187i \(0.360270\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −12.0000 −0.904534
\(177\) 0 0
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −6.70820 −0.490552
\(188\) 22.3607 1.63082
\(189\) 0 0
\(190\) 0 0
\(191\) −27.0000 −1.95365 −0.976826 0.214036i \(-0.931339\pi\)
−0.976826 + 0.214036i \(0.931339\pi\)
\(192\) 17.8885 1.29099
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 10.0000 0.700140
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 26.8328 1.86052
\(209\) 0 0
\(210\) 0 0
\(211\) 23.0000 1.58339 0.791693 0.610920i \(-0.209200\pi\)
0.791693 + 0.610920i \(0.209200\pi\)
\(212\) 0 0
\(213\) 26.8328 1.83855
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −30.0000 −2.02721
\(220\) 0 0
\(221\) 15.0000 1.00901
\(222\) 0 0
\(223\) 6.70820 0.449215 0.224607 0.974449i \(-0.427890\pi\)
0.224607 + 0.974449i \(0.427890\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −29.0689 −1.92937 −0.964685 0.263407i \(-0.915154\pi\)
−0.964685 + 0.263407i \(0.915154\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.23607 0.145248
\(238\) 0 0
\(239\) −9.00000 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 17.8885 1.14755
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 20.0000 1.26745
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 4.47214 0.278964 0.139482 0.990225i \(-0.455456\pi\)
0.139482 + 0.990225i \(0.455456\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −18.0000 −1.11417
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 8.94427 0.542326
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −33.0000 −1.96861 −0.984307 0.176462i \(-0.943535\pi\)
−0.984307 + 0.176462i \(0.943535\pi\)
\(282\) 0 0
\(283\) −33.5410 −1.99381 −0.996903 0.0786368i \(-0.974943\pi\)
−0.996903 + 0.0786368i \(0.974943\pi\)
\(284\) 24.0000 1.42414
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −12.0000 −0.705882
\(290\) 0 0
\(291\) 15.0000 0.879316
\(292\) −26.8328 −1.57027
\(293\) −24.5967 −1.43696 −0.718479 0.695549i \(-0.755161\pi\)
−0.718479 + 0.695549i \(0.755161\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −6.70820 −0.389249
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6.70820 −0.382857 −0.191429 0.981507i \(-0.561312\pi\)
−0.191429 + 0.981507i \(0.561312\pi\)
\(308\) 0 0
\(309\) 45.0000 2.55996
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −20.1246 −1.13751 −0.568755 0.822507i \(-0.692575\pi\)
−0.568755 + 0.822507i \(0.692575\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 27.0000 1.51171
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 22.0000 1.22222
\(325\) 0 0
\(326\) 0 0
\(327\) 24.5967 1.36020
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 17.8885 0.981761
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) −40.2492 −2.15758
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 15.0000 0.800641
\(352\) 0 0
\(353\) 29.0689 1.54718 0.773590 0.633686i \(-0.218459\pi\)
0.773590 + 0.633686i \(0.218459\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 4.47214 0.234726
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 33.5410 1.75083 0.875413 0.483375i \(-0.160589\pi\)
0.875413 + 0.483375i \(0.160589\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −60.3738 −3.10941
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.7771 −1.82812 −0.914062 0.405575i \(-0.867071\pi\)
−0.914062 + 0.405575i \(0.867071\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 13.4164 0.681115
\(389\) −39.0000 −1.97738 −0.988689 0.149979i \(-0.952080\pi\)
−0.988689 + 0.149979i \(0.952080\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 12.0000 0.603023
\(397\) 20.1246 1.01003 0.505013 0.863112i \(-0.331488\pi\)
0.505013 + 0.863112i \(0.331488\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.0000 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 40.2492 1.98294
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 37.0000 1.80327 0.901635 0.432498i \(-0.142368\pi\)
0.901635 + 0.432498i \(0.142368\pi\)
\(422\) 0 0
\(423\) −22.3607 −1.08721
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 45.0000 2.17262
\(430\) 0 0
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 8.94427 0.430331
\(433\) −40.2492 −1.93425 −0.967127 0.254293i \(-0.918157\pi\)
−0.967127 + 0.254293i \(0.918157\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 22.0000 1.05361
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −13.4164 −0.634574
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 38.0132 1.78601
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 5.00000 0.233380
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −36.0000 −1.67126
\(465\) 0 0
\(466\) 0 0
\(467\) −42.4853 −1.96598 −0.982992 0.183646i \(-0.941210\pi\)
−0.982992 + 0.183646i \(0.941210\pi\)
\(468\) −26.8328 −1.24035
\(469\) 0 0
\(470\) 0 0
\(471\) 30.0000 1.38233
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 4.00000 0.181818
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −33.0000 −1.48927 −0.744635 0.667472i \(-0.767376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(492\) 0 0
\(493\) −20.1246 −0.906367
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 41.0000 1.83541 0.917706 0.397260i \(-0.130039\pi\)
0.917706 + 0.397260i \(0.130039\pi\)
\(500\) 0 0
\(501\) −55.0000 −2.45722
\(502\) 0 0
\(503\) 38.0132 1.69492 0.847461 0.530857i \(-0.178130\pi\)
0.847461 + 0.530857i \(0.178130\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −71.5542 −3.17783
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 33.5410 1.47513
\(518\) 0 0
\(519\) −25.0000 −1.09738
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 26.8328 1.17332 0.586659 0.809834i \(-0.300443\pi\)
0.586659 + 0.809834i \(0.300443\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 26.8328 1.16775
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −53.6656 −2.31584
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 43.0000 1.84871 0.924357 0.381528i \(-0.124602\pi\)
0.924357 + 0.381528i \(0.124602\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 15.0000 0.633300
\(562\) 0 0
\(563\) 44.7214 1.88478 0.942390 0.334515i \(-0.108573\pi\)
0.942390 + 0.334515i \(0.108573\pi\)
\(564\) −50.0000 −2.10538
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 40.2492 1.68290
\(573\) 60.3738 2.52215
\(574\) 0 0
\(575\) 0 0
\(576\) −16.0000 −0.666667
\(577\) 33.5410 1.39633 0.698165 0.715936i \(-0.254000\pi\)
0.698165 + 0.715936i \(0.254000\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.94427 0.369170 0.184585 0.982817i \(-0.440906\pi\)
0.184585 + 0.982817i \(0.440906\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 42.4853 1.74466 0.872331 0.488916i \(-0.162608\pi\)
0.872331 + 0.488916i \(0.162608\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.0000 −0.491539
\(597\) 0 0
\(598\) 0 0
\(599\) −39.0000 −1.59350 −0.796748 0.604311i \(-0.793448\pi\)
−0.796748 + 0.604311i \(0.793448\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 34.0000 1.38344
\(605\) 0 0
\(606\) 0 0
\(607\) 20.1246 0.816833 0.408416 0.912796i \(-0.366081\pi\)
0.408416 + 0.912796i \(0.366081\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −75.0000 −3.03418
\(612\) −8.94427 −0.361551
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −60.0000 −2.40192
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 26.8328 1.07075
\(629\) 0 0
\(630\) 0 0
\(631\) −47.0000 −1.87104 −0.935520 0.353273i \(-0.885069\pi\)
−0.935520 + 0.353273i \(0.885069\pi\)
\(632\) 0 0
\(633\) −51.4296 −2.04414
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 6.70820 0.264546 0.132273 0.991213i \(-0.457772\pi\)
0.132273 + 0.991213i \(0.457772\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.8885 0.703271 0.351636 0.936137i \(-0.385626\pi\)
0.351636 + 0.936137i \(0.385626\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 26.8328 1.04685
\(658\) 0 0
\(659\) −51.0000 −1.98668 −0.993339 0.115229i \(-0.963240\pi\)
−0.993339 + 0.115229i \(0.963240\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) −33.5410 −1.30263
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −49.1935 −1.90335
\(669\) −15.0000 −0.579934
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −64.0000 −2.46154
\(677\) 51.4296 1.97660 0.988299 0.152527i \(-0.0487410\pi\)
0.988299 + 0.152527i \(0.0487410\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 65.0000 2.49081
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) −22.3607 −0.850026
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −33.0000 −1.24639 −0.623196 0.782065i \(-0.714166\pi\)
−0.623196 + 0.782065i \(0.714166\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 24.0000 0.904534
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.00000 −0.0375558 −0.0187779 0.999824i \(-0.505978\pi\)
−0.0187779 + 0.999824i \(0.505978\pi\)
\(710\) 0 0
\(711\) −2.00000 −0.0750059
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −48.0000 −1.79384
\(717\) 20.1246 0.751567
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −53.6656 −1.99035 −0.995174 0.0981255i \(-0.968715\pi\)
−0.995174 + 0.0981255i \(0.968715\pi\)
\(728\) 0 0
\(729\) −7.00000 −0.259259
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −20.1246 −0.743319 −0.371660 0.928369i \(-0.621211\pi\)
−0.371660 + 0.928369i \(0.621211\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −11.0000 −0.404642 −0.202321 0.979319i \(-0.564848\pi\)
−0.202321 + 0.979319i \(0.564848\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −17.8885 −0.654508
\(748\) 13.4164 0.490552
\(749\) 0 0
\(750\) 0 0
\(751\) −13.0000 −0.474377 −0.237188 0.971464i \(-0.576226\pi\)
−0.237188 + 0.971464i \(0.576226\pi\)
\(752\) −44.7214 −1.63082
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 54.0000 1.95365
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −35.7771 −1.29099
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −10.0000 −0.360141
\(772\) 0 0
\(773\) −2.23607 −0.0804258 −0.0402129 0.999191i \(-0.512804\pi\)
−0.0402129 + 0.999191i \(0.512804\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) −20.1246 −0.719195
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 33.5410 1.19561 0.597804 0.801642i \(-0.296040\pi\)
0.597804 + 0.801642i \(0.296040\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 55.9017 1.98014 0.990070 0.140576i \(-0.0448954\pi\)
0.990070 + 0.140576i \(0.0448954\pi\)
\(798\) 0 0
\(799\) −25.0000 −0.884436
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −40.2492 −1.42036
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39.0000 −1.37117 −0.685583 0.727994i \(-0.740453\pi\)
−0.685583 + 0.727994i \(0.740453\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −20.0000 −0.700140
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 57.0000 1.98931 0.994657 0.103236i \(-0.0329198\pi\)
0.994657 + 0.103236i \(0.0329198\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −53.6656 −1.86052
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 73.7902 2.54147
\(844\) −46.0000 −1.58339
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 75.0000 2.57399
\(850\) 0 0
\(851\) 0 0
\(852\) −53.6656 −1.83855
\(853\) −40.2492 −1.37811 −0.689054 0.724710i \(-0.741974\pi\)
−0.689054 + 0.724710i \(0.741974\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49.1935 1.68042 0.840209 0.542263i \(-0.182432\pi\)
0.840209 + 0.542263i \(0.182432\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 26.8328 0.911290
\(868\) 0 0
\(869\) 3.00000 0.101768
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −13.4164 −0.454077
\(874\) 0 0
\(875\) 0 0
\(876\) 60.0000 2.02721
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 55.0000 1.85510
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) −30.0000 −1.00901
\(885\) 0 0
\(886\) 0 0
\(887\) 35.7771 1.20128 0.600639 0.799521i \(-0.294913\pi\)
0.600639 + 0.799521i \(0.294913\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 33.0000 1.10554
\(892\) −13.4164 −0.449215
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 58.1378 1.92937
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 26.8328 0.888037
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −29.0000 −0.956622 −0.478311 0.878191i \(-0.658751\pi\)
−0.478311 + 0.878191i \(0.658751\pi\)
\(920\) 0 0
\(921\) 15.0000 0.494267
\(922\) 0 0
\(923\) −80.4984 −2.64964
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −40.2492 −1.32196
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.70820 −0.219147 −0.109574 0.993979i \(-0.534949\pi\)
−0.109574 + 0.993979i \(0.534949\pi\)
\(938\) 0 0
\(939\) 45.0000 1.46852
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) −4.47214 −0.145248
\(949\) 90.0000 2.92152
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 18.0000 0.582162
\(957\) −60.3738 −1.95161
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −35.7771 −1.14755
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −22.0000 −0.702406
\(982\) 0 0
\(983\) 29.0689 0.927153 0.463577 0.886057i \(-0.346566\pi\)
0.463577 + 0.886057i \(0.346566\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 0 0
\(993\) −17.8885 −0.567676
\(994\) 0 0
\(995\) 0 0
\(996\) −40.0000 −1.26745
\(997\) −60.3738 −1.91206 −0.956029 0.293271i \(-0.905256\pi\)
−0.956029 + 0.293271i \(0.905256\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.2.a.q.1.1 2
5.2 odd 4 245.2.b.d.99.2 yes 2
5.3 odd 4 245.2.b.d.99.1 2
5.4 even 2 inner 1225.2.a.q.1.2 2
7.6 odd 2 inner 1225.2.a.q.1.2 2
15.2 even 4 2205.2.d.h.1324.1 2
15.8 even 4 2205.2.d.h.1324.2 2
35.2 odd 12 245.2.j.b.214.1 4
35.3 even 12 245.2.j.b.79.2 4
35.12 even 12 245.2.j.b.214.2 4
35.13 even 4 245.2.b.d.99.2 yes 2
35.17 even 12 245.2.j.b.79.1 4
35.18 odd 12 245.2.j.b.79.1 4
35.23 odd 12 245.2.j.b.214.2 4
35.27 even 4 245.2.b.d.99.1 2
35.32 odd 12 245.2.j.b.79.2 4
35.33 even 12 245.2.j.b.214.1 4
35.34 odd 2 CM 1225.2.a.q.1.1 2
105.62 odd 4 2205.2.d.h.1324.2 2
105.83 odd 4 2205.2.d.h.1324.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.b.d.99.1 2 5.3 odd 4
245.2.b.d.99.1 2 35.27 even 4
245.2.b.d.99.2 yes 2 5.2 odd 4
245.2.b.d.99.2 yes 2 35.13 even 4
245.2.j.b.79.1 4 35.17 even 12
245.2.j.b.79.1 4 35.18 odd 12
245.2.j.b.79.2 4 35.3 even 12
245.2.j.b.79.2 4 35.32 odd 12
245.2.j.b.214.1 4 35.2 odd 12
245.2.j.b.214.1 4 35.33 even 12
245.2.j.b.214.2 4 35.12 even 12
245.2.j.b.214.2 4 35.23 odd 12
1225.2.a.q.1.1 2 1.1 even 1 trivial
1225.2.a.q.1.1 2 35.34 odd 2 CM
1225.2.a.q.1.2 2 5.4 even 2 inner
1225.2.a.q.1.2 2 7.6 odd 2 inner
2205.2.d.h.1324.1 2 15.2 even 4
2205.2.d.h.1324.1 2 105.83 odd 4
2205.2.d.h.1324.2 2 15.8 even 4
2205.2.d.h.1324.2 2 105.62 odd 4