Properties

Label 245.2.b.d.99.2
Level 245245
Weight 22
Character 245.99
Analytic conductor 1.9561.956
Analytic rank 00
Dimension 22
CM discriminant -35
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,2,Mod(99,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 245=572 245 = 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 245.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.956334849521.95633484952
Analytic rank: 00
Dimension: 22
Coefficient field: Q(5)\Q(\sqrt{-5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+5 x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 99.2
Root 2.23607i2.23607i of defining polynomial
Character χ\chi == 245.99
Dual form 245.2.b.d.99.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.23607iq3+2.00000q4+2.23607iq52.00000q93.00000q11+4.47214iq126.70820iq135.00000q15+4.00000q16+2.23607iq17+4.47214iq205.00000q25+2.23607iq27+9.00000q296.70820iq334.00000q36+15.0000q396.00000q444.47214iq4511.1803iq47+8.94427iq485.00000q5113.4164iq526.70820iq5510.0000q60+8.00000q64+15.0000q65+4.47214iq6812.0000q7113.4164iq7311.1803iq75+1.00000q79+8.94427iq8011.0000q81+8.94427iq835.00000q85+20.1246iq876.70820iq97+6.00000q99+O(q100)q+2.23607i q^{3} +2.00000 q^{4} +2.23607i q^{5} -2.00000 q^{9} -3.00000 q^{11} +4.47214i q^{12} -6.70820i q^{13} -5.00000 q^{15} +4.00000 q^{16} +2.23607i q^{17} +4.47214i q^{20} -5.00000 q^{25} +2.23607i q^{27} +9.00000 q^{29} -6.70820i q^{33} -4.00000 q^{36} +15.0000 q^{39} -6.00000 q^{44} -4.47214i q^{45} -11.1803i q^{47} +8.94427i q^{48} -5.00000 q^{51} -13.4164i q^{52} -6.70820i q^{55} -10.0000 q^{60} +8.00000 q^{64} +15.0000 q^{65} +4.47214i q^{68} -12.0000 q^{71} -13.4164i q^{73} -11.1803i q^{75} +1.00000 q^{79} +8.94427i q^{80} -11.0000 q^{81} +8.94427i q^{83} -5.00000 q^{85} +20.1246i q^{87} -6.70820i q^{97} +6.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q44q96q1110q15+8q1610q25+18q298q36+30q3912q4410q5120q60+16q64+30q6524q71+2q7922q8110q85++12q99+O(q100) 2 q + 4 q^{4} - 4 q^{9} - 6 q^{11} - 10 q^{15} + 8 q^{16} - 10 q^{25} + 18 q^{29} - 8 q^{36} + 30 q^{39} - 12 q^{44} - 10 q^{51} - 20 q^{60} + 16 q^{64} + 30 q^{65} - 24 q^{71} + 2 q^{79} - 22 q^{81} - 10 q^{85}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/245Z)×\left(\mathbb{Z}/245\mathbb{Z}\right)^\times.

nn 101101 197197
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 1.00000 00
−1.00000 π\pi
33 2.23607i 1.29099i 0.763763 + 0.645497i 0.223350π0.223350\pi
−0.763763 + 0.645497i 0.776650π0.776650\pi
44 2.00000 1.00000
55 2.23607i 1.00000i
66 0 0
77 0 0
88 0 0
99 −2.00000 −0.666667
1010 0 0
1111 −3.00000 −0.904534 −0.452267 0.891883i 0.649385π-0.649385\pi
−0.452267 + 0.891883i 0.649385π0.649385\pi
1212 4.47214i 1.29099i
1313 − 6.70820i − 1.86052i −0.366900 0.930261i 0.619581π-0.619581\pi
0.366900 0.930261i 0.380419π-0.380419\pi
1414 0 0
1515 −5.00000 −1.29099
1616 4.00000 1.00000
1717 2.23607i 0.542326i 0.962533 + 0.271163i 0.0874083π0.0874083\pi
−0.962533 + 0.271163i 0.912592π0.912592\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 4.47214i 1.00000i
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 −5.00000 −1.00000
2626 0 0
2727 2.23607i 0.430331i
2828 0 0
2929 9.00000 1.67126 0.835629 0.549294i 0.185103π-0.185103\pi
0.835629 + 0.549294i 0.185103π0.185103\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 − 6.70820i − 1.16775i
3434 0 0
3535 0 0
3636 −4.00000 −0.666667
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 15.0000 2.40192
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 −6.00000 −0.904534
4545 − 4.47214i − 0.666667i
4646 0 0
4747 − 11.1803i − 1.63082i −0.578884 0.815410i 0.696511π-0.696511\pi
0.578884 0.815410i 0.303489π-0.303489\pi
4848 8.94427i 1.29099i
4949 0 0
5050 0 0
5151 −5.00000 −0.700140
5252 − 13.4164i − 1.86052i
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 − 6.70820i − 0.904534i
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 −10.0000 −1.29099
6161 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6262 0 0
6363 0 0
6464 8.00000 1.00000
6565 15.0000 1.86052
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 4.47214i 0.542326i
6969 0 0
7070 0 0
7171 −12.0000 −1.42414 −0.712069 0.702109i 0.752242π-0.752242\pi
−0.712069 + 0.702109i 0.752242π0.752242\pi
7272 0 0
7373 − 13.4164i − 1.57027i −0.619324 0.785136i 0.712593π-0.712593\pi
0.619324 0.785136i 0.287407π-0.287407\pi
7474 0 0
7575 − 11.1803i − 1.29099i
7676 0 0
7777 0 0
7878 0 0
7979 1.00000 0.112509 0.0562544 0.998416i 0.482084π-0.482084\pi
0.0562544 + 0.998416i 0.482084π0.482084\pi
8080 8.94427i 1.00000i
8181 −11.0000 −1.22222
8282 0 0
8383 8.94427i 0.981761i 0.871227 + 0.490881i 0.163325π0.163325\pi
−0.871227 + 0.490881i 0.836675π0.836675\pi
8484 0 0
8585 −5.00000 −0.542326
8686 0 0
8787 20.1246i 2.15758i
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 − 6.70820i − 0.681115i −0.940224 0.340557i 0.889384π-0.889384\pi
0.940224 0.340557i 0.110616π-0.110616\pi
9898 0 0
9999 6.00000 0.603023
100100 −10.0000 −1.00000
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 20.1246i 1.98294i 0.130347 + 0.991468i 0.458391π0.458391\pi
−0.130347 + 0.991468i 0.541609π0.541609\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 4.47214i 0.430331i
109109 11.0000 1.05361 0.526804 0.849987i 0.323390π-0.323390\pi
0.526804 + 0.849987i 0.323390π0.323390\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 18.0000 1.67126
117117 13.4164i 1.24035i
118118 0 0
119119 0 0
120120 0 0
121121 −2.00000 −0.181818
122122 0 0
123123 0 0
124124 0 0
125125 − 11.1803i − 1.00000i
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 − 13.4164i − 1.16775i
133133 0 0
134134 0 0
135135 −5.00000 −0.430331
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 25.0000 2.10538
142142 0 0
143143 20.1246i 1.68290i
144144 −8.00000 −0.666667
145145 20.1246i 1.67126i
146146 0 0
147147 0 0
148148 0 0
149149 −6.00000 −0.491539 −0.245770 0.969328i 0.579041π-0.579041\pi
−0.245770 + 0.969328i 0.579041π0.579041\pi
150150 0 0
151151 −17.0000 −1.38344 −0.691720 0.722166i 0.743147π-0.743147\pi
−0.691720 + 0.722166i 0.743147π0.743147\pi
152152 0 0
153153 − 4.47214i − 0.361551i
154154 0 0
155155 0 0
156156 30.0000 2.40192
157157 − 13.4164i − 1.07075i −0.844616 0.535373i 0.820171π-0.820171\pi
0.844616 0.535373i 0.179829π-0.179829\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 15.0000 1.16775
166166 0 0
167167 24.5967i 1.90335i 0.307102 + 0.951677i 0.400641π0.400641\pi
−0.307102 + 0.951677i 0.599359π0.599359\pi
168168 0 0
169169 −32.0000 −2.46154
170170 0 0
171171 0 0
172172 0 0
173173 − 11.1803i − 0.850026i −0.905187 0.425013i 0.860270π-0.860270\pi
0.905187 0.425013i 0.139730π-0.139730\pi
174174 0 0
175175 0 0
176176 −12.0000 −0.904534
177177 0 0
178178 0 0
179179 −24.0000 −1.79384 −0.896922 0.442189i 0.854202π-0.854202\pi
−0.896922 + 0.442189i 0.854202π0.854202\pi
180180 − 8.94427i − 0.666667i
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 − 6.70820i − 0.490552i
188188 − 22.3607i − 1.63082i
189189 0 0
190190 0 0
191191 −27.0000 −1.95365 −0.976826 0.214036i 0.931339π-0.931339\pi
−0.976826 + 0.214036i 0.931339π0.931339\pi
192192 17.8885i 1.29099i
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 33.5410i 2.40192i
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 −10.0000 −0.700140
205205 0 0
206206 0 0
207207 0 0
208208 − 26.8328i − 1.86052i
209209 0 0
210210 0 0
211211 23.0000 1.58339 0.791693 0.610920i 0.209200π-0.209200\pi
0.791693 + 0.610920i 0.209200π0.209200\pi
212212 0 0
213213 − 26.8328i − 1.83855i
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 30.0000 2.02721
220220 − 13.4164i − 0.904534i
221221 15.0000 1.00901
222222 0 0
223223 − 6.70820i − 0.449215i −0.974449 0.224607i 0.927890π-0.927890\pi
0.974449 0.224607i 0.0721099π-0.0721099\pi
224224 0 0
225225 10.0000 0.666667
226226 0 0
227227 − 29.0689i − 1.92937i −0.263407 0.964685i 0.584846π-0.584846\pi
0.263407 0.964685i 0.415154π-0.415154\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 25.0000 1.63082
236236 0 0
237237 2.23607i 0.145248i
238238 0 0
239239 9.00000 0.582162 0.291081 0.956698i 0.405985π-0.405985\pi
0.291081 + 0.956698i 0.405985π0.405985\pi
240240 −20.0000 −1.29099
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0 0
243243 − 17.8885i − 1.14755i
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 −20.0000 −1.26745
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 − 11.1803i − 0.700140i
256256 16.0000 1.00000
257257 4.47214i 0.278964i 0.990225 + 0.139482i 0.0445438π0.0445438\pi
−0.990225 + 0.139482i 0.955456π0.955456\pi
258258 0 0
259259 0 0
260260 30.0000 1.86052
261261 −18.0000 −1.11417
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 8.94427i 0.542326i
273273 0 0
274274 0 0
275275 15.0000 0.904534
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 −33.0000 −1.96861 −0.984307 0.176462i 0.943535π-0.943535\pi
−0.984307 + 0.176462i 0.943535π0.943535\pi
282282 0 0
283283 33.5410i 1.99381i 0.0786368 + 0.996903i 0.474943π0.474943\pi
−0.0786368 + 0.996903i 0.525057π0.525057\pi
284284 −24.0000 −1.42414
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 12.0000 0.705882
290290 0 0
291291 15.0000 0.879316
292292 − 26.8328i − 1.57027i
293293 24.5967i 1.43696i 0.695549 + 0.718479i 0.255161π0.255161\pi
−0.695549 + 0.718479i 0.744839π0.744839\pi
294294 0 0
295295 0 0
296296 0 0
297297 − 6.70820i − 0.389249i
298298 0 0
299299 0 0
300300 − 22.3607i − 1.29099i
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 − 6.70820i − 0.382857i −0.981507 0.191429i 0.938688π-0.938688\pi
0.981507 0.191429i 0.0613121π-0.0613121\pi
308308 0 0
309309 −45.0000 −2.55996
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 20.1246i 1.13751i 0.822507 + 0.568755i 0.192575π0.192575\pi
−0.822507 + 0.568755i 0.807425π0.807425\pi
314314 0 0
315315 0 0
316316 2.00000 0.112509
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 −27.0000 −1.51171
320320 17.8885i 1.00000i
321321 0 0
322322 0 0
323323 0 0
324324 −22.0000 −1.22222
325325 33.5410i 1.86052i
326326 0 0
327327 24.5967i 1.36020i
328328 0 0
329329 0 0
330330 0 0
331331 8.00000 0.439720 0.219860 0.975531i 0.429440π-0.429440\pi
0.219860 + 0.975531i 0.429440π0.429440\pi
332332 17.8885i 0.981761i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 −10.0000 −0.542326
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 40.2492i 2.15758i
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 15.0000 0.800641
352352 0 0
353353 − 29.0689i − 1.54718i −0.633686 0.773590i 0.718459π-0.718459\pi
0.633686 0.773590i 0.281541π-0.281541\pi
354354 0 0
355355 − 26.8328i − 1.42414i
356356 0 0
357357 0 0
358358 0 0
359359 36.0000 1.90001 0.950004 0.312239i 0.101079π-0.101079\pi
0.950004 + 0.312239i 0.101079π0.101079\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 − 4.47214i − 0.234726i
364364 0 0
365365 30.0000 1.57027
366366 0 0
367367 33.5410i 1.75083i 0.483375 + 0.875413i 0.339411π0.339411\pi
−0.483375 + 0.875413i 0.660589π0.660589\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 25.0000 1.29099
376376 0 0
377377 − 60.3738i − 3.10941i
378378 0 0
379379 16.0000 0.821865 0.410932 0.911666i 0.365203π-0.365203\pi
0.410932 + 0.911666i 0.365203π0.365203\pi
380380 0 0
381381 0 0
382382 0 0
383383 35.7771i 1.82812i 0.405575 + 0.914062i 0.367071π0.367071\pi
−0.405575 + 0.914062i 0.632929π0.632929\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 − 13.4164i − 0.681115i
389389 39.0000 1.97738 0.988689 0.149979i 0.0479205π-0.0479205\pi
0.988689 + 0.149979i 0.0479205π0.0479205\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 2.23607i 0.112509i
396396 12.0000 0.603023
397397 20.1246i 1.01003i 0.863112 + 0.505013i 0.168512π0.168512\pi
−0.863112 + 0.505013i 0.831488π0.831488\pi
398398 0 0
399399 0 0
400400 −20.0000 −1.00000
401401 −27.0000 −1.34832 −0.674158 0.738587i 0.735493π-0.735493\pi
−0.674158 + 0.738587i 0.735493π0.735493\pi
402402 0 0
403403 0 0
404404 0 0
405405 − 24.5967i − 1.22222i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
410410 0 0
411411 0 0
412412 40.2492i 1.98294i
413413 0 0
414414 0 0
415415 −20.0000 −0.981761
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 37.0000 1.80327 0.901635 0.432498i 0.142368π-0.142368\pi
0.901635 + 0.432498i 0.142368π0.142368\pi
422422 0 0
423423 22.3607i 1.08721i
424424 0 0
425425 − 11.1803i − 0.542326i
426426 0 0
427427 0 0
428428 0 0
429429 −45.0000 −2.17262
430430 0 0
431431 −3.00000 −0.144505 −0.0722525 0.997386i 0.523019π-0.523019\pi
−0.0722525 + 0.997386i 0.523019π0.523019\pi
432432 8.94427i 0.430331i
433433 40.2492i 1.93425i 0.254293 + 0.967127i 0.418157π0.418157\pi
−0.254293 + 0.967127i 0.581843π0.581843\pi
434434 0 0
435435 −45.0000 −2.15758
436436 22.0000 1.05361
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 − 13.4164i − 0.634574i
448448 0 0
449449 9.00000 0.424736 0.212368 0.977190i 0.431882π-0.431882\pi
0.212368 + 0.977190i 0.431882π0.431882\pi
450450 0 0
451451 0 0
452452 0 0
453453 − 38.0132i − 1.78601i
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 −5.00000 −0.233380
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 36.0000 1.67126
465465 0 0
466466 0 0
467467 − 42.4853i − 1.96598i −0.183646 0.982992i 0.558790π-0.558790\pi
0.183646 0.982992i 0.441210π-0.441210\pi
468468 26.8328i 1.24035i
469469 0 0
470470 0 0
471471 30.0000 1.38233
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −4.00000 −0.181818
485485 15.0000 0.681115
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 −33.0000 −1.48927 −0.744635 0.667472i 0.767376π-0.767376\pi
−0.744635 + 0.667472i 0.767376π0.767376\pi
492492 0 0
493493 20.1246i 0.906367i
494494 0 0
495495 13.4164i 0.603023i
496496 0 0
497497 0 0
498498 0 0
499499 −41.0000 −1.83541 −0.917706 0.397260i 0.869961π-0.869961\pi
−0.917706 + 0.397260i 0.869961π0.869961\pi
500500 − 22.3607i − 1.00000i
501501 −55.0000 −2.45722
502502 0 0
503503 − 38.0132i − 1.69492i −0.530857 0.847461i 0.678130π-0.678130\pi
0.530857 0.847461i 0.321870π-0.321870\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 71.5542i − 3.17783i
508508 0 0
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 −45.0000 −1.98294
516516 0 0
517517 33.5410i 1.47513i
518518 0 0
519519 25.0000 1.09738
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 − 26.8328i − 1.17332i −0.809834 0.586659i 0.800443π-0.800443\pi
0.809834 0.586659i 0.199557π-0.199557\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 − 26.8328i − 1.16775i
529529 23.0000 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 − 53.6656i − 2.31584i
538538 0 0
539539 0 0
540540 −10.0000 −0.430331
541541 43.0000 1.84871 0.924357 0.381528i 0.124602π-0.124602\pi
0.924357 + 0.381528i 0.124602π0.124602\pi
542542 0 0
543543 0 0
544544 0 0
545545 24.5967i 1.05361i
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 15.0000 0.633300
562562 0 0
563563 − 44.7214i − 1.88478i −0.334515 0.942390i 0.608573π-0.608573\pi
0.334515 0.942390i 0.391427π-0.391427\pi
564564 50.0000 2.10538
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −6.00000 −0.251533 −0.125767 0.992060i 0.540139π-0.540139\pi
−0.125767 + 0.992060i 0.540139π0.540139\pi
570570 0 0
571571 32.0000 1.33916 0.669579 0.742741i 0.266474π-0.266474\pi
0.669579 + 0.742741i 0.266474π0.266474\pi
572572 40.2492i 1.68290i
573573 − 60.3738i − 2.52215i
574574 0 0
575575 0 0
576576 −16.0000 −0.666667
577577 33.5410i 1.39633i 0.715936 + 0.698165i 0.246000π0.246000\pi
−0.715936 + 0.698165i 0.754000π0.754000\pi
578578 0 0
579579 0 0
580580 40.2492i 1.67126i
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 −30.0000 −1.24035
586586 0 0
587587 8.94427i 0.369170i 0.982817 + 0.184585i 0.0590940π0.0590940\pi
−0.982817 + 0.184585i 0.940906π0.940906\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 − 42.4853i − 1.74466i −0.488916 0.872331i 0.662608π-0.662608\pi
0.488916 0.872331i 0.337392π-0.337392\pi
594594 0 0
595595 0 0
596596 −12.0000 −0.491539
597597 0 0
598598 0 0
599599 39.0000 1.59350 0.796748 0.604311i 0.206552π-0.206552\pi
0.796748 + 0.604311i 0.206552π0.206552\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 −34.0000 −1.38344
605605 − 4.47214i − 0.181818i
606606 0 0
607607 20.1246i 0.816833i 0.912796 + 0.408416i 0.133919π0.133919\pi
−0.912796 + 0.408416i 0.866081π0.866081\pi
608608 0 0
609609 0 0
610610 0 0
611611 −75.0000 −3.03418
612612 − 8.94427i − 0.361551i
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 60.0000 2.40192
625625 25.0000 1.00000
626626 0 0
627627 0 0
628628 − 26.8328i − 1.07075i
629629 0 0
630630 0 0
631631 −47.0000 −1.87104 −0.935520 0.353273i 0.885069π-0.885069\pi
−0.935520 + 0.353273i 0.885069π0.885069\pi
632632 0 0
633633 51.4296i 2.04414i
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 24.0000 0.949425
640640 0 0
641641 18.0000 0.710957 0.355479 0.934684i 0.384318π-0.384318\pi
0.355479 + 0.934684i 0.384318π0.384318\pi
642642 0 0
643643 − 6.70820i − 0.264546i −0.991213 0.132273i 0.957772π-0.957772\pi
0.991213 0.132273i 0.0422275π-0.0422275\pi
644644 0 0
645645 0 0
646646 0 0
647647 17.8885i 0.703271i 0.936137 + 0.351636i 0.114374π0.114374\pi
−0.936137 + 0.351636i 0.885626π0.885626\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 26.8328i 1.04685i
658658 0 0
659659 51.0000 1.98668 0.993339 0.115229i 0.0367601π-0.0367601\pi
0.993339 + 0.115229i 0.0367601π0.0367601\pi
660660 30.0000 1.16775
661661 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
662662 0 0
663663 33.5410i 1.30263i
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 49.1935i 1.90335i
669669 15.0000 0.579934
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 − 11.1803i − 0.430331i
676676 −64.0000 −2.46154
677677 51.4296i 1.97660i 0.152527 + 0.988299i 0.451259π0.451259\pi
−0.152527 + 0.988299i 0.548741π0.548741\pi
678678 0 0
679679 0 0
680680 0 0
681681 65.0000 2.49081
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 − 22.3607i − 0.850026i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 −33.0000 −1.24639 −0.623196 0.782065i 0.714166π-0.714166\pi
−0.623196 + 0.782065i 0.714166π0.714166\pi
702702 0 0
703703 0 0
704704 −24.0000 −0.904534
705705 55.9017i 2.10538i
706706 0 0
707707 0 0
708708 0 0
709709 1.00000 0.0375558 0.0187779 0.999824i 0.494022π-0.494022\pi
0.0187779 + 0.999824i 0.494022π0.494022\pi
710710 0 0
711711 −2.00000 −0.0750059
712712 0 0
713713 0 0
714714 0 0
715715 −45.0000 −1.68290
716716 −48.0000 −1.79384
717717 20.1246i 0.751567i
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 − 17.8885i − 0.666667i
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 −45.0000 −1.67126
726726 0 0
727727 − 53.6656i − 1.99035i −0.0981255 0.995174i 0.531285π-0.531285\pi
0.0981255 0.995174i 0.468715π-0.468715\pi
728728 0 0
729729 7.00000 0.259259
730730 0 0
731731 0 0
732732 0 0
733733 20.1246i 0.743319i 0.928369 + 0.371660i 0.121211π0.121211\pi
−0.928369 + 0.371660i 0.878789π0.878789\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 11.0000 0.404642 0.202321 0.979319i 0.435152π-0.435152\pi
0.202321 + 0.979319i 0.435152π0.435152\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 − 13.4164i − 0.491539i
746746 0 0
747747 − 17.8885i − 0.654508i
748748 − 13.4164i − 0.490552i
749749 0 0
750750 0 0
751751 −13.0000 −0.474377 −0.237188 0.971464i 0.576226π-0.576226\pi
−0.237188 + 0.971464i 0.576226π0.576226\pi
752752 − 44.7214i − 1.63082i
753753 0 0
754754 0 0
755755 − 38.0132i − 1.38344i
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 −54.0000 −1.95365
765765 10.0000 0.361551
766766 0 0
767767 0 0
768768 35.7771i 1.29099i
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 −10.0000 −0.360141
772772 0 0
773773 2.23607i 0.0804258i 0.999191 + 0.0402129i 0.0128036π0.0128036\pi
−0.999191 + 0.0402129i 0.987196π0.987196\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 67.0820i 2.40192i
781781 36.0000 1.28818
782782 0 0
783783 20.1246i 0.719195i
784784 0 0
785785 30.0000 1.07075
786786 0 0
787787 33.5410i 1.19561i 0.801642 + 0.597804i 0.203960π0.203960\pi
−0.801642 + 0.597804i 0.796040π0.796040\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 55.9017i 1.98014i 0.140576 + 0.990070i 0.455105π0.455105\pi
−0.140576 + 0.990070i 0.544895π0.544895\pi
798798 0 0
799799 25.0000 0.884436
800800 0 0
801801 0 0
802802 0 0
803803 40.2492i 1.42036i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 39.0000 1.37117 0.685583 0.727994i 0.259547π-0.259547\pi
0.685583 + 0.727994i 0.259547π0.259547\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 −20.0000 −0.700140
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 57.0000 1.98931 0.994657 0.103236i 0.0329198π-0.0329198\pi
0.994657 + 0.103236i 0.0329198π0.0329198\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 33.5410i 1.16775i
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 − 53.6656i − 1.86052i
833833 0 0
834834 0 0
835835 −55.0000 −1.90335
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 52.0000 1.79310
842842 0 0
843843 − 73.7902i − 2.54147i
844844 46.0000 1.58339
845845 − 71.5542i − 2.46154i
846846 0 0
847847 0 0
848848 0 0
849849 −75.0000 −2.57399
850850 0 0
851851 0 0
852852 − 53.6656i − 1.83855i
853853 40.2492i 1.37811i 0.724710 + 0.689054i 0.241974π0.241974\pi
−0.724710 + 0.689054i 0.758026π0.758026\pi
854854 0 0
855855 0 0
856856 0 0
857857 49.1935i 1.68042i 0.542263 + 0.840209i 0.317568π0.317568\pi
−0.542263 + 0.840209i 0.682432π0.682432\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 25.0000 0.850026
866866 0 0
867867 26.8328i 0.911290i
868868 0 0
869869 −3.00000 −0.101768
870870 0 0
871871 0 0
872872 0 0
873873 13.4164i 0.454077i
874874 0 0
875875 0 0
876876 60.0000 2.02721
877877 0 0 1.00000 00
−1.00000 π\pi
878878 0 0
879879 −55.0000 −1.85510
880880 − 26.8328i − 0.904534i
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 30.0000 1.00901
885885 0 0
886886 0 0
887887 35.7771i 1.20128i 0.799521 + 0.600639i 0.205087π0.205087\pi
−0.799521 + 0.600639i 0.794913π0.794913\pi
888888 0 0
889889 0 0
890890 0 0
891891 33.0000 1.10554
892892 − 13.4164i − 0.449215i
893893 0 0
894894 0 0
895895 − 53.6656i − 1.79384i
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 20.0000 0.666667
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 − 58.1378i − 1.92937i
909909 0 0
910910 0 0
911911 −12.0000 −0.397578 −0.198789 0.980042i 0.563701π-0.563701\pi
−0.198789 + 0.980042i 0.563701π0.563701\pi
912912 0 0
913913 − 26.8328i − 0.888037i
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 29.0000 0.956622 0.478311 0.878191i 0.341249π-0.341249\pi
0.478311 + 0.878191i 0.341249π0.341249\pi
920920 0 0
921921 15.0000 0.494267
922922 0 0
923923 80.4984i 2.64964i
924924 0 0
925925 0 0
926926 0 0
927927 − 40.2492i − 1.32196i
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 15.0000 0.490552
936936 0 0
937937 − 6.70820i − 0.219147i −0.993979 0.109574i 0.965051π-0.965051\pi
0.993979 0.109574i 0.0349486π-0.0349486\pi
938938 0 0
939939 −45.0000 −1.46852
940940 50.0000 1.63082
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 4.47214i 0.145248i
949949 −90.0000 −2.92152
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 − 60.3738i − 1.95365i
956956 18.0000 0.582162
957957 − 60.3738i − 1.95161i
958958 0 0
959959 0 0
960960 −40.0000 −1.29099
961961 −31.0000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 − 35.7771i − 1.14755i
973973 0 0
974974 0 0
975975 −75.0000 −2.40192
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 −22.0000 −0.702406
982982 0 0
983983 − 29.0689i − 0.927153i −0.886057 0.463577i 0.846566π-0.846566\pi
0.886057 0.463577i 0.153434π-0.153434\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −52.0000 −1.65183 −0.825917 0.563791i 0.809342π-0.809342\pi
−0.825917 + 0.563791i 0.809342π0.809342\pi
992992 0 0
993993 17.8885i 0.567676i
994994 0 0
995995 0 0
996996 −40.0000 −1.26745
997997 − 60.3738i − 1.91206i −0.293271 0.956029i 0.594744π-0.594744\pi
0.293271 0.956029i 0.405256π-0.405256\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.b.d.99.2 yes 2
3.2 odd 2 2205.2.d.h.1324.1 2
5.2 odd 4 1225.2.a.q.1.2 2
5.3 odd 4 1225.2.a.q.1.1 2
5.4 even 2 inner 245.2.b.d.99.1 2
7.2 even 3 245.2.j.b.214.1 4
7.3 odd 6 245.2.j.b.79.1 4
7.4 even 3 245.2.j.b.79.2 4
7.5 odd 6 245.2.j.b.214.2 4
7.6 odd 2 inner 245.2.b.d.99.1 2
15.14 odd 2 2205.2.d.h.1324.2 2
21.20 even 2 2205.2.d.h.1324.2 2
35.4 even 6 245.2.j.b.79.1 4
35.9 even 6 245.2.j.b.214.2 4
35.13 even 4 1225.2.a.q.1.2 2
35.19 odd 6 245.2.j.b.214.1 4
35.24 odd 6 245.2.j.b.79.2 4
35.27 even 4 1225.2.a.q.1.1 2
35.34 odd 2 CM 245.2.b.d.99.2 yes 2
105.104 even 2 2205.2.d.h.1324.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.b.d.99.1 2 5.4 even 2 inner
245.2.b.d.99.1 2 7.6 odd 2 inner
245.2.b.d.99.2 yes 2 1.1 even 1 trivial
245.2.b.d.99.2 yes 2 35.34 odd 2 CM
245.2.j.b.79.1 4 7.3 odd 6
245.2.j.b.79.1 4 35.4 even 6
245.2.j.b.79.2 4 7.4 even 3
245.2.j.b.79.2 4 35.24 odd 6
245.2.j.b.214.1 4 7.2 even 3
245.2.j.b.214.1 4 35.19 odd 6
245.2.j.b.214.2 4 7.5 odd 6
245.2.j.b.214.2 4 35.9 even 6
1225.2.a.q.1.1 2 5.3 odd 4
1225.2.a.q.1.1 2 35.27 even 4
1225.2.a.q.1.2 2 5.2 odd 4
1225.2.a.q.1.2 2 35.13 even 4
2205.2.d.h.1324.1 2 3.2 odd 2
2205.2.d.h.1324.1 2 105.104 even 2
2205.2.d.h.1324.2 2 15.14 odd 2
2205.2.d.h.1324.2 2 21.20 even 2