Properties

Label 245.2.b.d.99.2
Level $245$
Weight $2$
Character 245.99
Analytic conductor $1.956$
Analytic rank $0$
Dimension $2$
CM discriminant -35
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,2,Mod(99,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 99.2
Root \(2.23607i\) of defining polynomial
Character \(\chi\) \(=\) 245.99
Dual form 245.2.b.d.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607i q^{3} +2.00000 q^{4} +2.23607i q^{5} -2.00000 q^{9} -3.00000 q^{11} +4.47214i q^{12} -6.70820i q^{13} -5.00000 q^{15} +4.00000 q^{16} +2.23607i q^{17} +4.47214i q^{20} -5.00000 q^{25} +2.23607i q^{27} +9.00000 q^{29} -6.70820i q^{33} -4.00000 q^{36} +15.0000 q^{39} -6.00000 q^{44} -4.47214i q^{45} -11.1803i q^{47} +8.94427i q^{48} -5.00000 q^{51} -13.4164i q^{52} -6.70820i q^{55} -10.0000 q^{60} +8.00000 q^{64} +15.0000 q^{65} +4.47214i q^{68} -12.0000 q^{71} -13.4164i q^{73} -11.1803i q^{75} +1.00000 q^{79} +8.94427i q^{80} -11.0000 q^{81} +8.94427i q^{83} -5.00000 q^{85} +20.1246i q^{87} -6.70820i q^{97} +6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{4} - 4 q^{9} - 6 q^{11} - 10 q^{15} + 8 q^{16} - 10 q^{25} + 18 q^{29} - 8 q^{36} + 30 q^{39} - 12 q^{44} - 10 q^{51} - 20 q^{60} + 16 q^{64} + 30 q^{65} - 24 q^{71} + 2 q^{79} - 22 q^{81} - 10 q^{85}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) 2.23607i 1.29099i 0.763763 + 0.645497i \(0.223350\pi\)
−0.763763 + 0.645497i \(0.776650\pi\)
\(4\) 2.00000 1.00000
\(5\) 2.23607i 1.00000i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 4.47214i 1.29099i
\(13\) − 6.70820i − 1.86052i −0.366900 0.930261i \(-0.619581\pi\)
0.366900 0.930261i \(-0.380419\pi\)
\(14\) 0 0
\(15\) −5.00000 −1.29099
\(16\) 4.00000 1.00000
\(17\) 2.23607i 0.542326i 0.962533 + 0.271163i \(0.0874083\pi\)
−0.962533 + 0.271163i \(0.912592\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 4.47214i 1.00000i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 2.23607i 0.430331i
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) − 6.70820i − 1.16775i
\(34\) 0 0
\(35\) 0 0
\(36\) −4.00000 −0.666667
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 15.0000 2.40192
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −6.00000 −0.904534
\(45\) − 4.47214i − 0.666667i
\(46\) 0 0
\(47\) − 11.1803i − 1.63082i −0.578884 0.815410i \(-0.696511\pi\)
0.578884 0.815410i \(-0.303489\pi\)
\(48\) 8.94427i 1.29099i
\(49\) 0 0
\(50\) 0 0
\(51\) −5.00000 −0.700140
\(52\) − 13.4164i − 1.86052i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) − 6.70820i − 0.904534i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −10.0000 −1.29099
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 15.0000 1.86052
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 4.47214i 0.542326i
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) − 13.4164i − 1.57027i −0.619324 0.785136i \(-0.712593\pi\)
0.619324 0.785136i \(-0.287407\pi\)
\(74\) 0 0
\(75\) − 11.1803i − 1.29099i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) 8.94427i 1.00000i
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 8.94427i 0.981761i 0.871227 + 0.490881i \(0.163325\pi\)
−0.871227 + 0.490881i \(0.836675\pi\)
\(84\) 0 0
\(85\) −5.00000 −0.542326
\(86\) 0 0
\(87\) 20.1246i 2.15758i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 6.70820i − 0.681115i −0.940224 0.340557i \(-0.889384\pi\)
0.940224 0.340557i \(-0.110616\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) −10.0000 −1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 20.1246i 1.98294i 0.130347 + 0.991468i \(0.458391\pi\)
−0.130347 + 0.991468i \(0.541609\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 4.47214i 0.430331i
\(109\) 11.0000 1.05361 0.526804 0.849987i \(-0.323390\pi\)
0.526804 + 0.849987i \(0.323390\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 18.0000 1.67126
\(117\) 13.4164i 1.24035i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.1803i − 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) − 13.4164i − 1.16775i
\(133\) 0 0
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 25.0000 2.10538
\(142\) 0 0
\(143\) 20.1246i 1.68290i
\(144\) −8.00000 −0.666667
\(145\) 20.1246i 1.67126i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −17.0000 −1.38344 −0.691720 0.722166i \(-0.743147\pi\)
−0.691720 + 0.722166i \(0.743147\pi\)
\(152\) 0 0
\(153\) − 4.47214i − 0.361551i
\(154\) 0 0
\(155\) 0 0
\(156\) 30.0000 2.40192
\(157\) − 13.4164i − 1.07075i −0.844616 0.535373i \(-0.820171\pi\)
0.844616 0.535373i \(-0.179829\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 15.0000 1.16775
\(166\) 0 0
\(167\) 24.5967i 1.90335i 0.307102 + 0.951677i \(0.400641\pi\)
−0.307102 + 0.951677i \(0.599359\pi\)
\(168\) 0 0
\(169\) −32.0000 −2.46154
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 11.1803i − 0.850026i −0.905187 0.425013i \(-0.860270\pi\)
0.905187 0.425013i \(-0.139730\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −12.0000 −0.904534
\(177\) 0 0
\(178\) 0 0
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) − 8.94427i − 0.666667i
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 6.70820i − 0.490552i
\(188\) − 22.3607i − 1.63082i
\(189\) 0 0
\(190\) 0 0
\(191\) −27.0000 −1.95365 −0.976826 0.214036i \(-0.931339\pi\)
−0.976826 + 0.214036i \(0.931339\pi\)
\(192\) 17.8885i 1.29099i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 33.5410i 2.40192i
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −10.0000 −0.700140
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) − 26.8328i − 1.86052i
\(209\) 0 0
\(210\) 0 0
\(211\) 23.0000 1.58339 0.791693 0.610920i \(-0.209200\pi\)
0.791693 + 0.610920i \(0.209200\pi\)
\(212\) 0 0
\(213\) − 26.8328i − 1.83855i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 30.0000 2.02721
\(220\) − 13.4164i − 0.904534i
\(221\) 15.0000 1.00901
\(222\) 0 0
\(223\) − 6.70820i − 0.449215i −0.974449 0.224607i \(-0.927890\pi\)
0.974449 0.224607i \(-0.0721099\pi\)
\(224\) 0 0
\(225\) 10.0000 0.666667
\(226\) 0 0
\(227\) − 29.0689i − 1.92937i −0.263407 0.964685i \(-0.584846\pi\)
0.263407 0.964685i \(-0.415154\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 25.0000 1.63082
\(236\) 0 0
\(237\) 2.23607i 0.145248i
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) −20.0000 −1.29099
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) − 17.8885i − 1.14755i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −20.0000 −1.26745
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) − 11.1803i − 0.700140i
\(256\) 16.0000 1.00000
\(257\) 4.47214i 0.278964i 0.990225 + 0.139482i \(0.0445438\pi\)
−0.990225 + 0.139482i \(0.955456\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 30.0000 1.86052
\(261\) −18.0000 −1.11417
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 8.94427i 0.542326i
\(273\) 0 0
\(274\) 0 0
\(275\) 15.0000 0.904534
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −33.0000 −1.96861 −0.984307 0.176462i \(-0.943535\pi\)
−0.984307 + 0.176462i \(0.943535\pi\)
\(282\) 0 0
\(283\) 33.5410i 1.99381i 0.0786368 + 0.996903i \(0.474943\pi\)
−0.0786368 + 0.996903i \(0.525057\pi\)
\(284\) −24.0000 −1.42414
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 12.0000 0.705882
\(290\) 0 0
\(291\) 15.0000 0.879316
\(292\) − 26.8328i − 1.57027i
\(293\) 24.5967i 1.43696i 0.695549 + 0.718479i \(0.255161\pi\)
−0.695549 + 0.718479i \(0.744839\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 6.70820i − 0.389249i
\(298\) 0 0
\(299\) 0 0
\(300\) − 22.3607i − 1.29099i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 6.70820i − 0.382857i −0.981507 0.191429i \(-0.938688\pi\)
0.981507 0.191429i \(-0.0613121\pi\)
\(308\) 0 0
\(309\) −45.0000 −2.55996
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 20.1246i 1.13751i 0.822507 + 0.568755i \(0.192575\pi\)
−0.822507 + 0.568755i \(0.807425\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) −27.0000 −1.51171
\(320\) 17.8885i 1.00000i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −22.0000 −1.22222
\(325\) 33.5410i 1.86052i
\(326\) 0 0
\(327\) 24.5967i 1.36020i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 17.8885i 0.981761i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −10.0000 −0.542326
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 40.2492i 2.15758i
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 15.0000 0.800641
\(352\) 0 0
\(353\) − 29.0689i − 1.54718i −0.633686 0.773590i \(-0.718459\pi\)
0.633686 0.773590i \(-0.281541\pi\)
\(354\) 0 0
\(355\) − 26.8328i − 1.42414i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) − 4.47214i − 0.234726i
\(364\) 0 0
\(365\) 30.0000 1.57027
\(366\) 0 0
\(367\) 33.5410i 1.75083i 0.483375 + 0.875413i \(0.339411\pi\)
−0.483375 + 0.875413i \(0.660589\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 25.0000 1.29099
\(376\) 0 0
\(377\) − 60.3738i − 3.10941i
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 35.7771i 1.82812i 0.405575 + 0.914062i \(0.367071\pi\)
−0.405575 + 0.914062i \(0.632929\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) − 13.4164i − 0.681115i
\(389\) 39.0000 1.97738 0.988689 0.149979i \(-0.0479205\pi\)
0.988689 + 0.149979i \(0.0479205\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.23607i 0.112509i
\(396\) 12.0000 0.603023
\(397\) 20.1246i 1.01003i 0.863112 + 0.505013i \(0.168512\pi\)
−0.863112 + 0.505013i \(0.831488\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) −27.0000 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 24.5967i − 1.22222i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 40.2492i 1.98294i
\(413\) 0 0
\(414\) 0 0
\(415\) −20.0000 −0.981761
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 37.0000 1.80327 0.901635 0.432498i \(-0.142368\pi\)
0.901635 + 0.432498i \(0.142368\pi\)
\(422\) 0 0
\(423\) 22.3607i 1.08721i
\(424\) 0 0
\(425\) − 11.1803i − 0.542326i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −45.0000 −2.17262
\(430\) 0 0
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 8.94427i 0.430331i
\(433\) 40.2492i 1.93425i 0.254293 + 0.967127i \(0.418157\pi\)
−0.254293 + 0.967127i \(0.581843\pi\)
\(434\) 0 0
\(435\) −45.0000 −2.15758
\(436\) 22.0000 1.05361
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 13.4164i − 0.634574i
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 38.0132i − 1.78601i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) −5.00000 −0.233380
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 36.0000 1.67126
\(465\) 0 0
\(466\) 0 0
\(467\) − 42.4853i − 1.96598i −0.183646 0.982992i \(-0.558790\pi\)
0.183646 0.982992i \(-0.441210\pi\)
\(468\) 26.8328i 1.24035i
\(469\) 0 0
\(470\) 0 0
\(471\) 30.0000 1.38233
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −4.00000 −0.181818
\(485\) 15.0000 0.681115
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −33.0000 −1.48927 −0.744635 0.667472i \(-0.767376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(492\) 0 0
\(493\) 20.1246i 0.906367i
\(494\) 0 0
\(495\) 13.4164i 0.603023i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −41.0000 −1.83541 −0.917706 0.397260i \(-0.869961\pi\)
−0.917706 + 0.397260i \(0.869961\pi\)
\(500\) − 22.3607i − 1.00000i
\(501\) −55.0000 −2.45722
\(502\) 0 0
\(503\) − 38.0132i − 1.69492i −0.530857 0.847461i \(-0.678130\pi\)
0.530857 0.847461i \(-0.321870\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 71.5542i − 3.17783i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −45.0000 −1.98294
\(516\) 0 0
\(517\) 33.5410i 1.47513i
\(518\) 0 0
\(519\) 25.0000 1.09738
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) − 26.8328i − 1.17332i −0.809834 0.586659i \(-0.800443\pi\)
0.809834 0.586659i \(-0.199557\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) − 26.8328i − 1.16775i
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 53.6656i − 2.31584i
\(538\) 0 0
\(539\) 0 0
\(540\) −10.0000 −0.430331
\(541\) 43.0000 1.84871 0.924357 0.381528i \(-0.124602\pi\)
0.924357 + 0.381528i \(0.124602\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 24.5967i 1.05361i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 15.0000 0.633300
\(562\) 0 0
\(563\) − 44.7214i − 1.88478i −0.334515 0.942390i \(-0.608573\pi\)
0.334515 0.942390i \(-0.391427\pi\)
\(564\) 50.0000 2.10538
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 40.2492i 1.68290i
\(573\) − 60.3738i − 2.52215i
\(574\) 0 0
\(575\) 0 0
\(576\) −16.0000 −0.666667
\(577\) 33.5410i 1.39633i 0.715936 + 0.698165i \(0.246000\pi\)
−0.715936 + 0.698165i \(0.754000\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 40.2492i 1.67126i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −30.0000 −1.24035
\(586\) 0 0
\(587\) 8.94427i 0.369170i 0.982817 + 0.184585i \(0.0590940\pi\)
−0.982817 + 0.184585i \(0.940906\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 42.4853i − 1.74466i −0.488916 0.872331i \(-0.662608\pi\)
0.488916 0.872331i \(-0.337392\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.0000 −0.491539
\(597\) 0 0
\(598\) 0 0
\(599\) 39.0000 1.59350 0.796748 0.604311i \(-0.206552\pi\)
0.796748 + 0.604311i \(0.206552\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −34.0000 −1.38344
\(605\) − 4.47214i − 0.181818i
\(606\) 0 0
\(607\) 20.1246i 0.816833i 0.912796 + 0.408416i \(0.133919\pi\)
−0.912796 + 0.408416i \(0.866081\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −75.0000 −3.03418
\(612\) − 8.94427i − 0.361551i
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 60.0000 2.40192
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) − 26.8328i − 1.07075i
\(629\) 0 0
\(630\) 0 0
\(631\) −47.0000 −1.87104 −0.935520 0.353273i \(-0.885069\pi\)
−0.935520 + 0.353273i \(0.885069\pi\)
\(632\) 0 0
\(633\) 51.4296i 2.04414i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 24.0000 0.949425
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) − 6.70820i − 0.264546i −0.991213 0.132273i \(-0.957772\pi\)
0.991213 0.132273i \(-0.0422275\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.8885i 0.703271i 0.936137 + 0.351636i \(0.114374\pi\)
−0.936137 + 0.351636i \(0.885626\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 26.8328i 1.04685i
\(658\) 0 0
\(659\) 51.0000 1.98668 0.993339 0.115229i \(-0.0367601\pi\)
0.993339 + 0.115229i \(0.0367601\pi\)
\(660\) 30.0000 1.16775
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 33.5410i 1.30263i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 49.1935i 1.90335i
\(669\) 15.0000 0.579934
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) − 11.1803i − 0.430331i
\(676\) −64.0000 −2.46154
\(677\) 51.4296i 1.97660i 0.152527 + 0.988299i \(0.451259\pi\)
−0.152527 + 0.988299i \(0.548741\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 65.0000 2.49081
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) − 22.3607i − 0.850026i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −33.0000 −1.24639 −0.623196 0.782065i \(-0.714166\pi\)
−0.623196 + 0.782065i \(0.714166\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −24.0000 −0.904534
\(705\) 55.9017i 2.10538i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.00000 0.0375558 0.0187779 0.999824i \(-0.494022\pi\)
0.0187779 + 0.999824i \(0.494022\pi\)
\(710\) 0 0
\(711\) −2.00000 −0.0750059
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −45.0000 −1.68290
\(716\) −48.0000 −1.79384
\(717\) 20.1246i 0.751567i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) − 17.8885i − 0.666667i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −45.0000 −1.67126
\(726\) 0 0
\(727\) − 53.6656i − 1.99035i −0.0981255 0.995174i \(-0.531285\pi\)
0.0981255 0.995174i \(-0.468715\pi\)
\(728\) 0 0
\(729\) 7.00000 0.259259
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 20.1246i 0.743319i 0.928369 + 0.371660i \(0.121211\pi\)
−0.928369 + 0.371660i \(0.878789\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 11.0000 0.404642 0.202321 0.979319i \(-0.435152\pi\)
0.202321 + 0.979319i \(0.435152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) − 13.4164i − 0.491539i
\(746\) 0 0
\(747\) − 17.8885i − 0.654508i
\(748\) − 13.4164i − 0.490552i
\(749\) 0 0
\(750\) 0 0
\(751\) −13.0000 −0.474377 −0.237188 0.971464i \(-0.576226\pi\)
−0.237188 + 0.971464i \(0.576226\pi\)
\(752\) − 44.7214i − 1.63082i
\(753\) 0 0
\(754\) 0 0
\(755\) − 38.0132i − 1.38344i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −54.0000 −1.95365
\(765\) 10.0000 0.361551
\(766\) 0 0
\(767\) 0 0
\(768\) 35.7771i 1.29099i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −10.0000 −0.360141
\(772\) 0 0
\(773\) 2.23607i 0.0804258i 0.999191 + 0.0402129i \(0.0128036\pi\)
−0.999191 + 0.0402129i \(0.987196\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 67.0820i 2.40192i
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 20.1246i 0.719195i
\(784\) 0 0
\(785\) 30.0000 1.07075
\(786\) 0 0
\(787\) 33.5410i 1.19561i 0.801642 + 0.597804i \(0.203960\pi\)
−0.801642 + 0.597804i \(0.796040\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 55.9017i 1.98014i 0.140576 + 0.990070i \(0.455105\pi\)
−0.140576 + 0.990070i \(0.544895\pi\)
\(798\) 0 0
\(799\) 25.0000 0.884436
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 40.2492i 1.42036i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39.0000 1.37117 0.685583 0.727994i \(-0.259547\pi\)
0.685583 + 0.727994i \(0.259547\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −20.0000 −0.700140
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 57.0000 1.98931 0.994657 0.103236i \(-0.0329198\pi\)
0.994657 + 0.103236i \(0.0329198\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 33.5410i 1.16775i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 53.6656i − 1.86052i
\(833\) 0 0
\(834\) 0 0
\(835\) −55.0000 −1.90335
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) − 73.7902i − 2.54147i
\(844\) 46.0000 1.58339
\(845\) − 71.5542i − 2.46154i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −75.0000 −2.57399
\(850\) 0 0
\(851\) 0 0
\(852\) − 53.6656i − 1.83855i
\(853\) 40.2492i 1.37811i 0.724710 + 0.689054i \(0.241974\pi\)
−0.724710 + 0.689054i \(0.758026\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49.1935i 1.68042i 0.542263 + 0.840209i \(0.317568\pi\)
−0.542263 + 0.840209i \(0.682432\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 25.0000 0.850026
\(866\) 0 0
\(867\) 26.8328i 0.911290i
\(868\) 0 0
\(869\) −3.00000 −0.101768
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 13.4164i 0.454077i
\(874\) 0 0
\(875\) 0 0
\(876\) 60.0000 2.02721
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) −55.0000 −1.85510
\(880\) − 26.8328i − 0.904534i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 30.0000 1.00901
\(885\) 0 0
\(886\) 0 0
\(887\) 35.7771i 1.20128i 0.799521 + 0.600639i \(0.205087\pi\)
−0.799521 + 0.600639i \(0.794913\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 33.0000 1.10554
\(892\) − 13.4164i − 0.449215i
\(893\) 0 0
\(894\) 0 0
\(895\) − 53.6656i − 1.79384i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 20.0000 0.666667
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) − 58.1378i − 1.92937i
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) − 26.8328i − 0.888037i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 29.0000 0.956622 0.478311 0.878191i \(-0.341249\pi\)
0.478311 + 0.878191i \(0.341249\pi\)
\(920\) 0 0
\(921\) 15.0000 0.494267
\(922\) 0 0
\(923\) 80.4984i 2.64964i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 40.2492i − 1.32196i
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15.0000 0.490552
\(936\) 0 0
\(937\) − 6.70820i − 0.219147i −0.993979 0.109574i \(-0.965051\pi\)
0.993979 0.109574i \(-0.0349486\pi\)
\(938\) 0 0
\(939\) −45.0000 −1.46852
\(940\) 50.0000 1.63082
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 4.47214i 0.145248i
\(949\) −90.0000 −2.92152
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) − 60.3738i − 1.95365i
\(956\) 18.0000 0.582162
\(957\) − 60.3738i − 1.95161i
\(958\) 0 0
\(959\) 0 0
\(960\) −40.0000 −1.29099
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) − 35.7771i − 1.14755i
\(973\) 0 0
\(974\) 0 0
\(975\) −75.0000 −2.40192
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −22.0000 −0.702406
\(982\) 0 0
\(983\) − 29.0689i − 0.927153i −0.886057 0.463577i \(-0.846566\pi\)
0.886057 0.463577i \(-0.153434\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 0 0
\(993\) 17.8885i 0.567676i
\(994\) 0 0
\(995\) 0 0
\(996\) −40.0000 −1.26745
\(997\) − 60.3738i − 1.91206i −0.293271 0.956029i \(-0.594744\pi\)
0.293271 0.956029i \(-0.405256\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.b.d.99.2 yes 2
3.2 odd 2 2205.2.d.h.1324.1 2
5.2 odd 4 1225.2.a.q.1.2 2
5.3 odd 4 1225.2.a.q.1.1 2
5.4 even 2 inner 245.2.b.d.99.1 2
7.2 even 3 245.2.j.b.214.1 4
7.3 odd 6 245.2.j.b.79.1 4
7.4 even 3 245.2.j.b.79.2 4
7.5 odd 6 245.2.j.b.214.2 4
7.6 odd 2 inner 245.2.b.d.99.1 2
15.14 odd 2 2205.2.d.h.1324.2 2
21.20 even 2 2205.2.d.h.1324.2 2
35.4 even 6 245.2.j.b.79.1 4
35.9 even 6 245.2.j.b.214.2 4
35.13 even 4 1225.2.a.q.1.2 2
35.19 odd 6 245.2.j.b.214.1 4
35.24 odd 6 245.2.j.b.79.2 4
35.27 even 4 1225.2.a.q.1.1 2
35.34 odd 2 CM 245.2.b.d.99.2 yes 2
105.104 even 2 2205.2.d.h.1324.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.b.d.99.1 2 5.4 even 2 inner
245.2.b.d.99.1 2 7.6 odd 2 inner
245.2.b.d.99.2 yes 2 1.1 even 1 trivial
245.2.b.d.99.2 yes 2 35.34 odd 2 CM
245.2.j.b.79.1 4 7.3 odd 6
245.2.j.b.79.1 4 35.4 even 6
245.2.j.b.79.2 4 7.4 even 3
245.2.j.b.79.2 4 35.24 odd 6
245.2.j.b.214.1 4 7.2 even 3
245.2.j.b.214.1 4 35.19 odd 6
245.2.j.b.214.2 4 7.5 odd 6
245.2.j.b.214.2 4 35.9 even 6
1225.2.a.q.1.1 2 5.3 odd 4
1225.2.a.q.1.1 2 35.27 even 4
1225.2.a.q.1.2 2 5.2 odd 4
1225.2.a.q.1.2 2 35.13 even 4
2205.2.d.h.1324.1 2 3.2 odd 2
2205.2.d.h.1324.1 2 105.104 even 2
2205.2.d.h.1324.2 2 15.14 odd 2
2205.2.d.h.1324.2 2 21.20 even 2