L(s) = 1 | − 16·2-s + 4·3-s + 144·4-s − 64·6-s + 27·7-s − 960·8-s − 62·9-s − 39·11-s + 576·12-s + 179·13-s − 432·14-s + 5.28e3·16-s + 247·17-s + 992·18-s − 25·19-s + 108·21-s + 624·22-s + 179·23-s − 3.84e3·24-s − 2.86e3·26-s − 102·27-s + 3.88e3·28-s − 565·29-s − 89·31-s − 2.53e4·32-s − 156·33-s − 3.95e3·34-s + ⋯ |
L(s) = 1 | − 5.65·2-s + 0.769·3-s + 18·4-s − 4.35·6-s + 1.45·7-s − 42.4·8-s − 2.29·9-s − 1.06·11-s + 13.8·12-s + 3.81·13-s − 8.24·14-s + 82.5·16-s + 3.52·17-s + 12.9·18-s − 0.301·19-s + 1.12·21-s + 6.04·22-s + 1.62·23-s − 32.6·24-s − 21.6·26-s − 0.727·27-s + 26.2·28-s − 3.61·29-s − 0.515·31-s − 140.·32-s − 0.822·33-s − 19.9·34-s + ⋯ |
Λ(s)=(=((28⋅532)s/2ΓC(s)8L(s)Λ(4−s)
Λ(s)=(=((28⋅532)s/2ΓC(s+3/2)8L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.337726004 |
L(21) |
≈ |
1.337726004 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+pT)8 |
| 5 | 1 |
good | 3 | 1−4T+26pT2−458T3+3736T4−21284T5+47725pT6−689974T7+4284844T8−689974p3T9+47725p7T10−21284p9T11+3736p12T12−458p15T13+26p19T14−4p21T15+p24T16 |
| 7 | 1−27T+1312T2−21346T3+754721T4−1255896pT5+303427660T6−2702813353T7+104452113604T8−2702813353p3T9+303427660p6T10−1255896p10T11+754721p12T12−21346p15T13+1312p18T14−27p21T15+p24T16 |
| 11 | 1+39T+3350T2+111410T3+774335pT4+295217122T5+17381158818T6+489155464115T7+23841275119380T8+489155464115p3T9+17381158818p6T10+295217122p9T11+774335p13T12+111410p15T13+3350p18T14+39p21T15+p24T16 |
| 13 | 1−179T+18963T2−1425043T3+83285016T4−3916072579T5+156156827690T6−5745676940154T7+237221890478099T8−5745676940154p3T9+156156827690p6T10−3916072579p9T11+83285016p12T12−1425043p15T13+18963p18T14−179p21T15+p24T16 |
| 17 | 1−247T+43092T2−5416366T3+35109328pT4−56707178117T5+5053326009255T6−403779423876048T7+29993946177008184T8−403779423876048p3T9+5053326009255p6T10−56707178117p9T11+35109328p13T12−5416366p15T13+43092p18T14−247p21T15+p24T16 |
| 19 | 1+25T+29022T2+1048310T3+24456062pT4+16885403025T5+5078356152059T6+173645627039000T7+40137236328736080T8+173645627039000p3T9+5078356152059p6T10+16885403025p9T11+24456062p13T12+1048310p15T13+29022p18T14+25p21T15+p24T16 |
| 23 | 1−179T+39323T2−4116143T3+845669571T4−109920609624T5+17395875133180T6−1630691152015284T7+205047824474561674T8−1630691152015284p3T9+17395875133180p6T10−109920609624p9T11+845669571p12T12−4116143p15T13+39323p18T14−179p21T15+p24T16 |
| 29 | 1+565T+265917T2+82588765T3+22616657268T4+4944757781865T5+998019534529924T6+173320809150848750T7+28784408280803237505T8+173320809150848750p3T9+998019534529924p6T10+4944757781865p9T11+22616657268p12T12+82588765p15T13+265917p18T14+565p21T15+p24T16 |
| 31 | 1+89T+204085T2+522785pT3+19028053945T4+1325266015752T5+1059716594028998T6+62973270985320070T7+38581577327933099030T8+62973270985320070p3T9+1059716594028998p6T10+1325266015752p9T11+19028053945p12T12+522785p16T13+204085p18T14+89p21T15+p24T16 |
| 37 | 1−287T+263247T2−41739741T3+25397450946T4−1211311720107T5+1241716482853020T6+90589591335584382T7+50710454906087085309T8+90589591335584382p3T9+1241716482853020p6T10−1211311720107p9T11+25397450946p12T12−41739741p15T13+263247p18T14−287p21T15+p24T16 |
| 41 | 1+394T+520380T2+175897160T3+120118591240T4+34514935457472T5+16109872456033553T6+3861648373034550680T7+13⋯80T8+3861648373034550680p3T9+16109872456033553p6T10+34514935457472p9T11+120118591240p12T12+175897160p15T13+520380p18T14+394p21T15+p24T16 |
| 43 | 1−529T+414328T2−139331268T3+64713221751T4−16515039487214T5+6454461910629660T6−1478695245459034599T7+54⋯24T8−1478695245459034599p3T9+6454461910629660p6T10−16515039487214p9T11+64713221751p12T12−139331268p15T13+414328p18T14−529p21T15+p24T16 |
| 47 | 1+758T+784692T2+439041634T3+271966134346T4+2521337641614pT5+54533132602498955T6+19158219614764220602T7+69⋯84T8+19158219614764220602p3T9+54533132602498955p6T10+2521337641614p10T11+271966134346p12T12+439041634p15T13+784692p18T14+758p21T15+p24T16 |
| 53 | 1+56T+861328T2+20068102T3+354725727136T4+1894129166506T5+91932536311490645T6−103035379136580124T7+16⋯64T8−103035379136580124p3T9+91932536311490645p6T10+1894129166506p9T11+354725727136p12T12+20068102p15T13+861328p18T14+56p21T15+p24T16 |
| 59 | 1+1220T+2036087T2+1793989770T3+1664695350853T4+1121489731769670T5+733224544342936169T6+38⋯00T7+19⋯80T8+38⋯00p3T9+733224544342936169p6T10+1121489731769670p9T11+1664695350853p12T12+1793989770p15T13+2036087p18T14+1220p21T15+p24T16 |
| 61 | 1+489T+1575055T2+621459855T3+1111083730090T4+361578972829797T5+467005356774259768T6+12⋯30T7+12⋯65T8+12⋯30p3T9+467005356774259768p6T10+361578972829797p9T11+1111083730090p12T12+621459855p15T13+1575055p18T14+489p21T15+p24T16 |
| 67 | 1−2547T+4137912T2−4723504026T3+4326889325011T4−3285937502563142T5+2194176556517022280T6−13⋯03T7+74⋯24T8−13⋯03p3T9+2194176556517022280p6T10−3285937502563142p9T11+4326889325011p12T12−4723504026p15T13+4137912p18T14−2547p21T15+p24T16 |
| 71 | 1−1576T+2062240T2−1802050730T3+1564601142700T4−1075368517244678T5+753772981185501113T6−44⋯40T7+56118484608830905460p2T8−44⋯40p3T9+753772981185501113p6T10−1075368517244678p9T11+1564601142700p12T12−1802050730p15T13+2062240p18T14−1576p21T15+p24T16 |
| 73 | 1+166T+1843928T2−4132708T3+1618846353956T4−128675140372744T5+995478281705972145T6−75680988855895892424T7+45⋯44T8−75680988855895892424p3T9+995478281705972145p6T10−128675140372744p9T11+1618846353956p12T12−4132708p15T13+1843928p18T14+166p21T15+p24T16 |
| 79 | 1+1540T+3069157T2+3430256170T3+54859141207pT4+3921664767097740T5+3798209682014350499T6+28⋯50T7+22⋯80T8+28⋯50p3T9+3798209682014350499p6T10+3921664767097740p9T11+54859141207p13T12+3430256170p15T13+3069157p18T14+1540p21T15+p24T16 |
| 83 | 1−929T+3192013T2−2114311123T3+4453876755901T4−2243553413996524T5+3873090378397321250T6−15⋯54T7+24⋯54T8−15⋯54p3T9+3873090378397321250p6T10−2243553413996524p9T11+4453876755901p12T12−2114311123p15T13+3192013p18T14−929p21T15+p24T16 |
| 89 | 1+1150T+3775147T2+2886348600T3+6042067745463T4+3499900267843900T5+6365375889650535029T6+31⋯50T7+51⋯20T8+31⋯50p3T9+6365375889650535029p6T10+3499900267843900p9T11+6042067745463p12T12+2886348600p15T13+3775147p18T14+1150p21T15+p24T16 |
| 97 | 1−632T+4051692T2−1487361826T3+7677909587811T4−1053131834623492T5+9327233457339635510T6+22⋯52T7+90⋯39T8+22⋯52p3T9+9327233457339635510p6T10−1053131834623492p9T11+7677909587811p12T12−1487361826p15T13+4051692p18T14−632p21T15+p24T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.66144241289903067333037111553, −3.30163130689450921631176645128, −3.17331508518770915275983494402, −3.05697198066675454806759565248, −2.96507106992486802284538267408, −2.94169301659605556175930482926, −2.89505184765455542519566561686, −2.86381884765811122199979320967, −2.67314695962071250172624552724, −2.23555965677225500777846211872, −2.23051924417237627269898298389, −1.91104870107562838974905869903, −1.74736175494083124537429285420, −1.71294857450523396937078706039, −1.69941050166545581097406100181, −1.56735006731892549212051452426, −1.47519469060589493827059673935, −1.21844710552070063501257751982, −1.20702059904232830410970580587, −0.67574071779948984728446194366, −0.63890998982087346687774393905, −0.62538239499700763597809751549, −0.60638455703089458103342337627, −0.45541027852408461052568422885, −0.14532312328804863226173401609,
0.14532312328804863226173401609, 0.45541027852408461052568422885, 0.60638455703089458103342337627, 0.62538239499700763597809751549, 0.63890998982087346687774393905, 0.67574071779948984728446194366, 1.20702059904232830410970580587, 1.21844710552070063501257751982, 1.47519469060589493827059673935, 1.56735006731892549212051452426, 1.69941050166545581097406100181, 1.71294857450523396937078706039, 1.74736175494083124537429285420, 1.91104870107562838974905869903, 2.23051924417237627269898298389, 2.23555965677225500777846211872, 2.67314695962071250172624552724, 2.86381884765811122199979320967, 2.89505184765455542519566561686, 2.94169301659605556175930482926, 2.96507106992486802284538267408, 3.05697198066675454806759565248, 3.17331508518770915275983494402, 3.30163130689450921631176645128, 3.66144241289903067333037111553
Plot not available for L-functions of degree greater than 10.