Properties

Label 1250.4.a.g
Level 12501250
Weight 44
Character orbit 1250.a
Self dual yes
Analytic conductor 73.75273.752
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1250,4,Mod(1,1250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1250.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1250=254 1250 = 2 \cdot 5^{4}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1250.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 73.752387507273.7523875072
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8145x6180x5+5585x4+8550x349600x223400x+24400 x^{8} - 145x^{6} - 180x^{5} + 5585x^{4} + 8550x^{3} - 49600x^{2} - 23400x + 24400 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 52 5^{2}
Twist minimal: no (minimal twist has level 50)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2q2+(β3+β1+1)q3+4q4+(2β32β12)q6+(β6β5β3++3)q78q8+(β7+β6β5++8)q9++(64β714β6++197)q99+O(q100) q - 2 q^{2} + (\beta_{3} + \beta_1 + 1) q^{3} + 4 q^{4} + ( - 2 \beta_{3} - 2 \beta_1 - 2) q^{6} + (\beta_{6} - \beta_{5} - \beta_{3} + \cdots + 3) q^{7} - 8 q^{8} + (\beta_{7} + \beta_{6} - \beta_{5} + \cdots + 8) q^{9}+ \cdots + ( - 64 \beta_{7} - 14 \beta_{6} + \cdots + 197) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q16q2+4q3+32q48q6+27q764q8+76q939q11+16q12+179q1354q14+128q16+247q17152q1825q19104q21+78q22+893q99+O(q100) 8 q - 16 q^{2} + 4 q^{3} + 32 q^{4} - 8 q^{6} + 27 q^{7} - 64 q^{8} + 76 q^{9} - 39 q^{11} + 16 q^{12} + 179 q^{13} - 54 q^{14} + 128 q^{16} + 247 q^{17} - 152 q^{18} - 25 q^{19} - 104 q^{21} + 78 q^{22}+ \cdots - 893 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8145x6180x5+5585x4+8550x349600x223400x+24400 x^{8} - 145x^{6} - 180x^{5} + 5585x^{4} + 8550x^{3} - 49600x^{2} - 23400x + 24400 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (3ν7+7862ν671095ν5669690ν4+4411135ν3+14153360ν2++19422920)/25315520 ( 3 \nu^{7} + 7862 \nu^{6} - 71095 \nu^{5} - 669690 \nu^{4} + 4411135 \nu^{3} + 14153360 \nu^{2} + \cdots + 19422920 ) / 25315520 Copy content Toggle raw display
β3\beta_{3}== (483ν7+6ν654311ν5229130ν4+1358175ν3+12951920ν2+87980920)/50631040 ( 483 \nu^{7} + 6 \nu^{6} - 54311 \nu^{5} - 229130 \nu^{4} + 1358175 \nu^{3} + 12951920 \nu^{2} + \cdots - 87980920 ) / 50631040 Copy content Toggle raw display
β4\beta_{4}== (8957ν7267418ν6+2569081ν5+31189430ν4136905185ν3+481941880)/151893120 ( - 8957 \nu^{7} - 267418 \nu^{6} + 2569081 \nu^{5} + 31189430 \nu^{4} - 136905185 \nu^{3} + \cdots - 481941880 ) / 151893120 Copy content Toggle raw display
β5\beta_{5}== (12677ν7+109910ν6+2122561ν511780410ν4125902505ν3++1204836680)/151893120 ( - 12677 \nu^{7} + 109910 \nu^{6} + 2122561 \nu^{5} - 11780410 \nu^{4} - 125902505 \nu^{3} + \cdots + 1204836680 ) / 151893120 Copy content Toggle raw display
β6\beta_{6}== (43249ν7+156702ν6+5557613ν59725490ν4198111205ν3+768664920)/75946560 ( - 43249 \nu^{7} + 156702 \nu^{6} + 5557613 \nu^{5} - 9725490 \nu^{4} - 198111205 \nu^{3} + \cdots - 768664920 ) / 75946560 Copy content Toggle raw display
β7\beta_{7}== (87161ν7+158322ν612903685ν533617310ν4+472382285ν3+2650904040)/151893120 ( 87161 \nu^{7} + 158322 \nu^{6} - 12903685 \nu^{5} - 33617310 \nu^{4} + 472382285 \nu^{3} + \cdots - 2650904040 ) / 151893120 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7+β6β5+β43β32β2+3β1+35 \beta_{7} + \beta_{6} - \beta_{5} + \beta_{4} - 3\beta_{3} - 2\beta_{2} + 3\beta _1 + 35 Copy content Toggle raw display
ν3\nu^{3}== 3β7+3β65β5β451β324β2+76β1+49 3\beta_{7} + 3\beta_{6} - 5\beta_{5} - \beta_{4} - 51\beta_{3} - 24\beta_{2} + 76\beta _1 + 49 Copy content Toggle raw display
ν4\nu^{4}== 98β7+86β676β5+82β4916β3258β2+419β1+2050 98\beta_{7} + 86\beta_{6} - 76\beta_{5} + 82\beta_{4} - 916\beta_{3} - 258\beta_{2} + 419\beta _1 + 2050 Copy content Toggle raw display
ν5\nu^{5}== 545β7+485β6525β5+105β47735β33230β2+6765β1+7955 545\beta_{7} + 485\beta_{6} - 525\beta_{5} + 105\beta_{4} - 7735\beta_{3} - 3230\beta_{2} + 6765\beta _1 + 7955 Copy content Toggle raw display
ν6\nu^{6}== 9765β7+8205β66595β5+6685β4113585β330760β2++153215 9765 \beta_{7} + 8205 \beta_{6} - 6595 \beta_{5} + 6685 \beta_{4} - 113585 \beta_{3} - 30760 \beta_{2} + \cdots + 153215 Copy content Toggle raw display
ν7\nu^{7}== 72400β7+59980β654130β5+26620β4974210β3364090β2++970920 72400 \beta_{7} + 59980 \beta_{6} - 54130 \beta_{5} + 26620 \beta_{4} - 974210 \beta_{3} - 364090 \beta_{2} + \cdots + 970920 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−7.69551
−6.77522
−4.92810
−0.938118
0.526459
2.77977
6.68748
10.3432
−2.00000 −8.31354 4.00000 0 16.6271 26.4146 −8.00000 42.1150 0
1.2 −2.00000 −5.15719 4.00000 0 10.3144 3.36421 −8.00000 −0.403415 0
1.3 −2.00000 −3.31006 4.00000 0 6.62013 25.0474 −8.00000 −16.0435 0
1.4 −2.00000 −1.55615 4.00000 0 3.11230 −19.9781 −8.00000 −24.5784 0
1.5 −2.00000 −0.0915752 4.00000 0 0.183150 −10.7092 −8.00000 −26.9916 0
1.6 −2.00000 4.39780 4.00000 0 −8.79560 −32.4633 −8.00000 −7.65935 0
1.7 −2.00000 8.30552 4.00000 0 −16.6110 11.9615 −8.00000 41.9816 0
1.8 −2.00000 9.72520 4.00000 0 −19.4504 23.3628 −8.00000 67.5796 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1250.4.a.g 8
5.b even 2 1 1250.4.a.j 8
25.d even 5 2 250.4.d.b 16
25.e even 10 2 50.4.d.b 16
25.f odd 20 4 250.4.e.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.4.d.b 16 25.e even 10 2
250.4.d.b 16 25.d even 5 2
250.4.e.c 32 25.f odd 20 4
1250.4.a.g 8 1.a even 1 1 trivial
1250.4.a.j 8 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T384T37138T36+298T35+5680T34278T3363483T3284256T37184 T_{3}^{8} - 4T_{3}^{7} - 138T_{3}^{6} + 298T_{3}^{5} + 5680T_{3}^{4} - 278T_{3}^{3} - 63483T_{3}^{2} - 84256T_{3} - 7184 acting on S4new(Γ0(1250))S_{4}^{\mathrm{new}}(\Gamma_0(1250)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+2)8 (T + 2)^{8} Copy content Toggle raw display
33 T84T7+7184 T^{8} - 4 T^{7} + \cdots - 7184 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+4320209664 T^{8} + \cdots - 4320209664 Copy content Toggle raw display
1111 T8+1769565317824 T^{8} + \cdots - 1769565317824 Copy content Toggle raw display
1313 T8+519553779309 T^{8} + \cdots - 519553779309 Copy content Toggle raw display
1717 T8++98261859394116 T^{8} + \cdots + 98261859394116 Copy content Toggle raw display
1919 T8+109942918897600 T^{8} + \cdots - 109942918897600 Copy content Toggle raw display
2323 T8+65 ⁣ ⁣64 T^{8} + \cdots - 65\!\cdots\!64 Copy content Toggle raw display
2929 T8++10 ⁣ ⁣25 T^{8} + \cdots + 10\!\cdots\!25 Copy content Toggle raw display
3131 T8+55950338499264 T^{8} + \cdots - 55950338499264 Copy content Toggle raw display
3737 T8+15 ⁣ ⁣59 T^{8} + \cdots - 15\!\cdots\!59 Copy content Toggle raw display
4141 T8+14 ⁣ ⁣64 T^{8} + \cdots - 14\!\cdots\!64 Copy content Toggle raw display
4343 T8++15 ⁣ ⁣76 T^{8} + \cdots + 15\!\cdots\!76 Copy content Toggle raw display
4747 T8++37 ⁣ ⁣76 T^{8} + \cdots + 37\!\cdots\!76 Copy content Toggle raw display
5353 T8++10 ⁣ ⁣56 T^{8} + \cdots + 10\!\cdots\!56 Copy content Toggle raw display
5959 T8++18 ⁣ ⁣00 T^{8} + \cdots + 18\!\cdots\!00 Copy content Toggle raw display
6161 T8++28 ⁣ ⁣61 T^{8} + \cdots + 28\!\cdots\!61 Copy content Toggle raw display
6767 T8++20 ⁣ ⁣56 T^{8} + \cdots + 20\!\cdots\!56 Copy content Toggle raw display
7171 T8+12 ⁣ ⁣24 T^{8} + \cdots - 12\!\cdots\!24 Copy content Toggle raw display
7373 T8++79 ⁣ ⁣96 T^{8} + \cdots + 79\!\cdots\!96 Copy content Toggle raw display
7979 T8+96 ⁣ ⁣00 T^{8} + \cdots - 96\!\cdots\!00 Copy content Toggle raw display
8383 T8+68 ⁣ ⁣64 T^{8} + \cdots - 68\!\cdots\!64 Copy content Toggle raw display
8989 T8++25 ⁣ ⁣00 T^{8} + \cdots + 25\!\cdots\!00 Copy content Toggle raw display
9797 T8++35 ⁣ ⁣71 T^{8} + \cdots + 35\!\cdots\!71 Copy content Toggle raw display
show more
show less