Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1250,4,Mod(1,1250)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1250.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1250.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 50) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.00000 | −8.31354 | 4.00000 | 0 | 16.6271 | 26.4146 | −8.00000 | 42.1150 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | −2.00000 | −5.15719 | 4.00000 | 0 | 10.3144 | 3.36421 | −8.00000 | −0.403415 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | −2.00000 | −3.31006 | 4.00000 | 0 | 6.62013 | 25.0474 | −8.00000 | −16.0435 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | −2.00000 | −1.55615 | 4.00000 | 0 | 3.11230 | −19.9781 | −8.00000 | −24.5784 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | −2.00000 | −0.0915752 | 4.00000 | 0 | 0.183150 | −10.7092 | −8.00000 | −26.9916 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | −2.00000 | 4.39780 | 4.00000 | 0 | −8.79560 | −32.4633 | −8.00000 | −7.65935 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | −2.00000 | 8.30552 | 4.00000 | 0 | −16.6110 | 11.9615 | −8.00000 | 41.9816 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | −2.00000 | 9.72520 | 4.00000 | 0 | −19.4504 | 23.3628 | −8.00000 | 67.5796 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1250.4.a.g | 8 | |
5.b | even | 2 | 1 | 1250.4.a.j | 8 | ||
25.d | even | 5 | 2 | 250.4.d.b | 16 | ||
25.e | even | 10 | 2 | 50.4.d.b | ✓ | 16 | |
25.f | odd | 20 | 4 | 250.4.e.c | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
50.4.d.b | ✓ | 16 | 25.e | even | 10 | 2 | |
250.4.d.b | 16 | 25.d | even | 5 | 2 | ||
250.4.e.c | 32 | 25.f | odd | 20 | 4 | ||
1250.4.a.g | 8 | 1.a | even | 1 | 1 | trivial | |
1250.4.a.j | 8 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .