Properties

Label 1250.4.a.g
Level $1250$
Weight $4$
Character orbit 1250.a
Self dual yes
Analytic conductor $73.752$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1250,4,Mod(1,1250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1250.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1250 = 2 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1250.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.7523875072\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 145x^{6} - 180x^{5} + 5585x^{4} + 8550x^{3} - 49600x^{2} - 23400x + 24400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 50)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_{3} + \beta_1 + 1) q^{3} + 4 q^{4} + ( - 2 \beta_{3} - 2 \beta_1 - 2) q^{6} + (\beta_{6} - \beta_{5} - \beta_{3} + \cdots + 3) q^{7} - 8 q^{8} + (\beta_{7} + \beta_{6} - \beta_{5} + \cdots + 8) q^{9}+ \cdots + ( - 64 \beta_{7} - 14 \beta_{6} + \cdots + 197) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{2} + 4 q^{3} + 32 q^{4} - 8 q^{6} + 27 q^{7} - 64 q^{8} + 76 q^{9} - 39 q^{11} + 16 q^{12} + 179 q^{13} - 54 q^{14} + 128 q^{16} + 247 q^{17} - 152 q^{18} - 25 q^{19} - 104 q^{21} + 78 q^{22}+ \cdots - 893 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 145x^{6} - 180x^{5} + 5585x^{4} + 8550x^{3} - 49600x^{2} - 23400x + 24400 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3 \nu^{7} + 7862 \nu^{6} - 71095 \nu^{5} - 669690 \nu^{4} + 4411135 \nu^{3} + 14153360 \nu^{2} + \cdots + 19422920 ) / 25315520 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 483 \nu^{7} + 6 \nu^{6} - 54311 \nu^{5} - 229130 \nu^{4} + 1358175 \nu^{3} + 12951920 \nu^{2} + \cdots - 87980920 ) / 50631040 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 8957 \nu^{7} - 267418 \nu^{6} + 2569081 \nu^{5} + 31189430 \nu^{4} - 136905185 \nu^{3} + \cdots - 481941880 ) / 151893120 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 12677 \nu^{7} + 109910 \nu^{6} + 2122561 \nu^{5} - 11780410 \nu^{4} - 125902505 \nu^{3} + \cdots + 1204836680 ) / 151893120 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 43249 \nu^{7} + 156702 \nu^{6} + 5557613 \nu^{5} - 9725490 \nu^{4} - 198111205 \nu^{3} + \cdots - 768664920 ) / 75946560 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 87161 \nu^{7} + 158322 \nu^{6} - 12903685 \nu^{5} - 33617310 \nu^{4} + 472382285 \nu^{3} + \cdots - 2650904040 ) / 151893120 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} + \beta_{6} - \beta_{5} + \beta_{4} - 3\beta_{3} - 2\beta_{2} + 3\beta _1 + 35 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{7} + 3\beta_{6} - 5\beta_{5} - \beta_{4} - 51\beta_{3} - 24\beta_{2} + 76\beta _1 + 49 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 98\beta_{7} + 86\beta_{6} - 76\beta_{5} + 82\beta_{4} - 916\beta_{3} - 258\beta_{2} + 419\beta _1 + 2050 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 545\beta_{7} + 485\beta_{6} - 525\beta_{5} + 105\beta_{4} - 7735\beta_{3} - 3230\beta_{2} + 6765\beta _1 + 7955 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9765 \beta_{7} + 8205 \beta_{6} - 6595 \beta_{5} + 6685 \beta_{4} - 113585 \beta_{3} - 30760 \beta_{2} + \cdots + 153215 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 72400 \beta_{7} + 59980 \beta_{6} - 54130 \beta_{5} + 26620 \beta_{4} - 974210 \beta_{3} - 364090 \beta_{2} + \cdots + 970920 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.69551
−6.77522
−4.92810
−0.938118
0.526459
2.77977
6.68748
10.3432
−2.00000 −8.31354 4.00000 0 16.6271 26.4146 −8.00000 42.1150 0
1.2 −2.00000 −5.15719 4.00000 0 10.3144 3.36421 −8.00000 −0.403415 0
1.3 −2.00000 −3.31006 4.00000 0 6.62013 25.0474 −8.00000 −16.0435 0
1.4 −2.00000 −1.55615 4.00000 0 3.11230 −19.9781 −8.00000 −24.5784 0
1.5 −2.00000 −0.0915752 4.00000 0 0.183150 −10.7092 −8.00000 −26.9916 0
1.6 −2.00000 4.39780 4.00000 0 −8.79560 −32.4633 −8.00000 −7.65935 0
1.7 −2.00000 8.30552 4.00000 0 −16.6110 11.9615 −8.00000 41.9816 0
1.8 −2.00000 9.72520 4.00000 0 −19.4504 23.3628 −8.00000 67.5796 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1250.4.a.g 8
5.b even 2 1 1250.4.a.j 8
25.d even 5 2 250.4.d.b 16
25.e even 10 2 50.4.d.b 16
25.f odd 20 4 250.4.e.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.4.d.b 16 25.e even 10 2
250.4.d.b 16 25.d even 5 2
250.4.e.c 32 25.f odd 20 4
1250.4.a.g 8 1.a even 1 1 trivial
1250.4.a.j 8 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 4T_{3}^{7} - 138T_{3}^{6} + 298T_{3}^{5} + 5680T_{3}^{4} - 278T_{3}^{3} - 63483T_{3}^{2} - 84256T_{3} - 7184 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1250))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 4 T^{7} + \cdots - 7184 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots - 4320209664 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots - 1769565317824 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots - 519553779309 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 98261859394116 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots - 109942918897600 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots - 65\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 10\!\cdots\!25 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 55950338499264 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 15\!\cdots\!59 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 14\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 37\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 28\!\cdots\!61 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 20\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots - 12\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 79\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 96\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 68\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 35\!\cdots\!71 \) Copy content Toggle raw display
show more
show less