L(s) = 1 | − 2·2-s + 8.30·3-s + 4·4-s − 16.6·6-s + 11.9·7-s − 8·8-s + 41.9·9-s + 54.3·11-s + 33.2·12-s + 67.8·13-s − 23.9·14-s + 16·16-s + 10.6·17-s − 83.9·18-s + 22.9·19-s + 99.3·21-s − 108.·22-s + 147.·23-s − 66.4·24-s − 135.·26-s + 124.·27-s + 47.8·28-s + 205.·29-s − 87.6·31-s − 32·32-s + 451.·33-s − 21.2·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.59·3-s + 0.5·4-s − 1.13·6-s + 0.645·7-s − 0.353·8-s + 1.55·9-s + 1.48·11-s + 0.799·12-s + 1.44·13-s − 0.456·14-s + 0.250·16-s + 0.151·17-s − 1.09·18-s + 0.277·19-s + 1.03·21-s − 1.05·22-s + 1.33·23-s − 0.565·24-s − 1.02·26-s + 0.886·27-s + 0.322·28-s + 1.31·29-s − 0.507·31-s − 0.176·32-s + 2.38·33-s − 0.107·34-s + ⋯ |
Λ(s)=(=(1250s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1250s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.933968579 |
L(21) |
≈ |
3.933968579 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2T |
| 5 | 1 |
good | 3 | 1−8.30T+27T2 |
| 7 | 1−11.9T+343T2 |
| 11 | 1−54.3T+1.33e3T2 |
| 13 | 1−67.8T+2.19e3T2 |
| 17 | 1−10.6T+4.91e3T2 |
| 19 | 1−22.9T+6.85e3T2 |
| 23 | 1−147.T+1.21e4T2 |
| 29 | 1−205.T+2.43e4T2 |
| 31 | 1+87.6T+2.97e4T2 |
| 37 | 1+413.T+5.06e4T2 |
| 41 | 1+67.6T+6.89e4T2 |
| 43 | 1+471.T+7.95e4T2 |
| 47 | 1+66.0T+1.03e5T2 |
| 53 | 1+316.T+1.48e5T2 |
| 59 | 1+101.T+2.05e5T2 |
| 61 | 1+405.T+2.26e5T2 |
| 67 | 1−525.T+3.00e5T2 |
| 71 | 1+477.T+3.57e5T2 |
| 73 | 1−857.T+3.89e5T2 |
| 79 | 1−549.T+4.93e5T2 |
| 83 | 1+287.T+5.71e5T2 |
| 89 | 1+39.9T+7.04e5T2 |
| 97 | 1−1.02e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.035498750786148777313786603501, −8.610055840474365079302271785076, −8.078936411383808078814557644818, −7.03963551977920677093940365914, −6.41642167248270792478702351879, −4.92139498869641512839693129178, −3.68033320470698989089948981847, −3.17331508518770915275983494402, −1.74736175494083124537429285420, −1.21844710552070063501257751982,
1.21844710552070063501257751982, 1.74736175494083124537429285420, 3.17331508518770915275983494402, 3.68033320470698989089948981847, 4.92139498869641512839693129178, 6.41642167248270792478702351879, 7.03963551977920677093940365914, 8.078936411383808078814557644818, 8.610055840474365079302271785076, 9.035498750786148777313786603501