Properties

Label 2-1250-1.1-c3-0-75
Degree $2$
Conductor $1250$
Sign $1$
Analytic cond. $73.7523$
Root an. cond. $8.58792$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 8.30·3-s + 4·4-s − 16.6·6-s + 11.9·7-s − 8·8-s + 41.9·9-s + 54.3·11-s + 33.2·12-s + 67.8·13-s − 23.9·14-s + 16·16-s + 10.6·17-s − 83.9·18-s + 22.9·19-s + 99.3·21-s − 108.·22-s + 147.·23-s − 66.4·24-s − 135.·26-s + 124.·27-s + 47.8·28-s + 205.·29-s − 87.6·31-s − 32·32-s + 451.·33-s − 21.2·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.59·3-s + 0.5·4-s − 1.13·6-s + 0.645·7-s − 0.353·8-s + 1.55·9-s + 1.48·11-s + 0.799·12-s + 1.44·13-s − 0.456·14-s + 0.250·16-s + 0.151·17-s − 1.09·18-s + 0.277·19-s + 1.03·21-s − 1.05·22-s + 1.33·23-s − 0.565·24-s − 1.02·26-s + 0.886·27-s + 0.322·28-s + 1.31·29-s − 0.507·31-s − 0.176·32-s + 2.38·33-s − 0.107·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1250 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1250 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1250\)    =    \(2 \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(73.7523\)
Root analytic conductor: \(8.58792\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1250,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.933968579\)
\(L(\frac12)\) \(\approx\) \(3.933968579\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 \)
good3 \( 1 - 8.30T + 27T^{2} \)
7 \( 1 - 11.9T + 343T^{2} \)
11 \( 1 - 54.3T + 1.33e3T^{2} \)
13 \( 1 - 67.8T + 2.19e3T^{2} \)
17 \( 1 - 10.6T + 4.91e3T^{2} \)
19 \( 1 - 22.9T + 6.85e3T^{2} \)
23 \( 1 - 147.T + 1.21e4T^{2} \)
29 \( 1 - 205.T + 2.43e4T^{2} \)
31 \( 1 + 87.6T + 2.97e4T^{2} \)
37 \( 1 + 413.T + 5.06e4T^{2} \)
41 \( 1 + 67.6T + 6.89e4T^{2} \)
43 \( 1 + 471.T + 7.95e4T^{2} \)
47 \( 1 + 66.0T + 1.03e5T^{2} \)
53 \( 1 + 316.T + 1.48e5T^{2} \)
59 \( 1 + 101.T + 2.05e5T^{2} \)
61 \( 1 + 405.T + 2.26e5T^{2} \)
67 \( 1 - 525.T + 3.00e5T^{2} \)
71 \( 1 + 477.T + 3.57e5T^{2} \)
73 \( 1 - 857.T + 3.89e5T^{2} \)
79 \( 1 - 549.T + 4.93e5T^{2} \)
83 \( 1 + 287.T + 5.71e5T^{2} \)
89 \( 1 + 39.9T + 7.04e5T^{2} \)
97 \( 1 - 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.035498750786148777313786603501, −8.610055840474365079302271785076, −8.078936411383808078814557644818, −7.03963551977920677093940365914, −6.41642167248270792478702351879, −4.92139498869641512839693129178, −3.68033320470698989089948981847, −3.17331508518770915275983494402, −1.74736175494083124537429285420, −1.21844710552070063501257751982, 1.21844710552070063501257751982, 1.74736175494083124537429285420, 3.17331508518770915275983494402, 3.68033320470698989089948981847, 4.92139498869641512839693129178, 6.41642167248270792478702351879, 7.03963551977920677093940365914, 8.078936411383808078814557644818, 8.610055840474365079302271785076, 9.035498750786148777313786603501

Graph of the $Z$-function along the critical line