Properties

Label 12-1254e6-1.1-c1e6-0-2
Degree $12$
Conductor $3.889\times 10^{18}$
Sign $1$
Analytic cond. $1.00797\times 10^{6}$
Root an. cond. $3.16437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 3·3-s + 3·4-s + 2·5-s − 9·6-s + 12·7-s + 2·8-s + 3·9-s − 6·10-s + 6·11-s + 9·12-s + 3·13-s − 36·14-s + 6·15-s − 9·16-s − 2·17-s − 9·18-s + 3·19-s + 6·20-s + 36·21-s − 18·22-s + 10·23-s + 6·24-s + 9·25-s − 9·26-s − 2·27-s + 36·28-s + ⋯
L(s)  = 1  − 2.12·2-s + 1.73·3-s + 3/2·4-s + 0.894·5-s − 3.67·6-s + 4.53·7-s + 0.707·8-s + 9-s − 1.89·10-s + 1.80·11-s + 2.59·12-s + 0.832·13-s − 9.62·14-s + 1.54·15-s − 9/4·16-s − 0.485·17-s − 2.12·18-s + 0.688·19-s + 1.34·20-s + 7.85·21-s − 3.83·22-s + 2.08·23-s + 1.22·24-s + 9/5·25-s − 1.76·26-s − 0.384·27-s + 6.80·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{6} \cdot 11^{6} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{6} \cdot 11^{6} \cdot 19^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 3^{6} \cdot 11^{6} \cdot 19^{6}\)
Sign: $1$
Analytic conductor: \(1.00797\times 10^{6}\)
Root analytic conductor: \(3.16437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 3^{6} \cdot 11^{6} \cdot 19^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.895290416\)
\(L(\frac12)\) \(\approx\) \(4.895290416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T + T^{2} )^{3} \)
3 \( ( 1 - T + T^{2} )^{3} \)
11 \( ( 1 - T )^{6} \)
19 \( 1 - 3 T - 6 T^{2} + 43 T^{3} - 6 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
good5 \( 1 - 2 T - p T^{2} + 6 T^{3} + 12 T^{4} + 22 T^{5} - 111 T^{6} + 22 p T^{7} + 12 p^{2} T^{8} + 6 p^{3} T^{9} - p^{5} T^{10} - 2 p^{5} T^{11} + p^{6} T^{12} \)
7 \( ( 1 - 6 T + 26 T^{2} - 76 T^{3} + 26 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
13 \( 1 - 3 T + 6 T^{2} + 3 p T^{3} - 102 T^{4} - 345 T^{5} + 3332 T^{6} - 345 p T^{7} - 102 p^{2} T^{8} + 3 p^{4} T^{9} + 6 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \)
17 \( 1 + 2 T - 16 T^{2} - 184 T^{3} - 164 T^{4} + 1458 T^{5} + 14414 T^{6} + 1458 p T^{7} - 164 p^{2} T^{8} - 184 p^{3} T^{9} - 16 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \)
23 \( 1 - 10 T + 14 T^{2} + 68 T^{3} + 778 T^{4} - 5634 T^{5} + 16622 T^{6} - 5634 p T^{7} + 778 p^{2} T^{8} + 68 p^{3} T^{9} + 14 p^{4} T^{10} - 10 p^{5} T^{11} + p^{6} T^{12} \)
29 \( 1 - 3 T - 47 T^{2} - 38 T^{3} + 1317 T^{4} + 3581 T^{5} - 45510 T^{6} + 3581 p T^{7} + 1317 p^{2} T^{8} - 38 p^{3} T^{9} - 47 p^{4} T^{10} - 3 p^{5} T^{11} + p^{6} T^{12} \)
31 \( ( 1 + 10 T + 119 T^{2} + 636 T^{3} + 119 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( ( 1 + 4 T + p T^{2} )^{6} \)
41 \( 1 + 8 T - 11 T^{2} - 456 T^{3} - 1674 T^{4} + 3848 T^{5} + 78417 T^{6} + 3848 p T^{7} - 1674 p^{2} T^{8} - 456 p^{3} T^{9} - 11 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12} \)
43 \( 1 + 7 T - 41 T^{2} - 620 T^{3} - 145 T^{4} + 15013 T^{5} + 110738 T^{6} + 15013 p T^{7} - 145 p^{2} T^{8} - 620 p^{3} T^{9} - 41 p^{4} T^{10} + 7 p^{5} T^{11} + p^{6} T^{12} \)
47 \( 1 - 7 T - p T^{2} + 30 T^{3} + 2247 T^{4} + 14009 T^{5} - 210546 T^{6} + 14009 p T^{7} + 2247 p^{2} T^{8} + 30 p^{3} T^{9} - p^{5} T^{10} - 7 p^{5} T^{11} + p^{6} T^{12} \)
53 \( 1 + 26 T + 309 T^{2} + 3038 T^{3} + 30686 T^{4} + 255066 T^{5} + 1835857 T^{6} + 255066 p T^{7} + 30686 p^{2} T^{8} + 3038 p^{3} T^{9} + 309 p^{4} T^{10} + 26 p^{5} T^{11} + p^{6} T^{12} \)
59 \( 1 + 2 T - 157 T^{2} - 2 p T^{3} + 15982 T^{4} + 4386 T^{5} - 1084105 T^{6} + 4386 p T^{7} + 15982 p^{2} T^{8} - 2 p^{4} T^{9} - 157 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} \)
61 \( 1 + 3 T - 2 T^{2} - 851 T^{3} - 1876 T^{4} + 11999 T^{5} + 608456 T^{6} + 11999 p T^{7} - 1876 p^{2} T^{8} - 851 p^{3} T^{9} - 2 p^{4} T^{10} + 3 p^{5} T^{11} + p^{6} T^{12} \)
67 \( 1 + 6 T - 111 T^{2} - 294 T^{3} + 8232 T^{4} - 4818 T^{5} - 662137 T^{6} - 4818 p T^{7} + 8232 p^{2} T^{8} - 294 p^{3} T^{9} - 111 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \)
71 \( 1 - 7 T - 163 T^{2} + 458 T^{3} + 23095 T^{4} - 30411 T^{5} - 1779370 T^{6} - 30411 p T^{7} + 23095 p^{2} T^{8} + 458 p^{3} T^{9} - 163 p^{4} T^{10} - 7 p^{5} T^{11} + p^{6} T^{12} \)
73 \( 1 + 6 T - 59 T^{2} + 562 T^{3} + 2066 T^{4} - 50866 T^{5} - 72619 T^{6} - 50866 p T^{7} + 2066 p^{2} T^{8} + 562 p^{3} T^{9} - 59 p^{4} T^{10} + 6 p^{5} T^{11} + p^{6} T^{12} \)
79 \( 1 - 6 T - 101 T^{2} + 386 T^{3} + 4322 T^{4} + 9682 T^{5} - 356533 T^{6} + 9682 p T^{7} + 4322 p^{2} T^{8} + 386 p^{3} T^{9} - 101 p^{4} T^{10} - 6 p^{5} T^{11} + p^{6} T^{12} \)
83 \( ( 1 + 19 T + 353 T^{2} + 3326 T^{3} + 353 p T^{4} + 19 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
89 \( 1 - 37 T + 678 T^{2} - 9571 T^{3} + 120056 T^{4} - 1268769 T^{5} + 12038284 T^{6} - 1268769 p T^{7} + 120056 p^{2} T^{8} - 9571 p^{3} T^{9} + 678 p^{4} T^{10} - 37 p^{5} T^{11} + p^{6} T^{12} \)
97 \( 1 + T - 129 T^{2} + 800 T^{3} + 4625 T^{4} - 59361 T^{5} + 288862 T^{6} - 59361 p T^{7} + 4625 p^{2} T^{8} + 800 p^{3} T^{9} - 129 p^{4} T^{10} + p^{5} T^{11} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.13133271252072893674056400176, −5.01349495829686994755413251962, −4.75070612325496286856383644143, −4.73377002026592167999445455014, −4.56702763736243982602026955342, −4.44499346451817828377566800751, −4.02640903312572756686300734110, −3.90413429356284829533504128080, −3.87563390138396654404110419693, −3.52641340079845831945129214393, −3.27431575724861398457916195238, −3.27069710822891362442496794362, −3.16018714334800215031856824368, −2.98950970044281064632847971613, −2.52816104740058299561546715425, −2.38198106122704904174628813912, −1.86458780566143654213150004210, −1.82586245945233310526662749245, −1.76098107566736558313097400787, −1.69273634176523288362704593174, −1.57646064633531466723583618273, −1.43421892080224852458218805044, −1.09728472047749531136290061185, −0.893708026341500811278208609820, −0.28421253234324838221673942225, 0.28421253234324838221673942225, 0.893708026341500811278208609820, 1.09728472047749531136290061185, 1.43421892080224852458218805044, 1.57646064633531466723583618273, 1.69273634176523288362704593174, 1.76098107566736558313097400787, 1.82586245945233310526662749245, 1.86458780566143654213150004210, 2.38198106122704904174628813912, 2.52816104740058299561546715425, 2.98950970044281064632847971613, 3.16018714334800215031856824368, 3.27069710822891362442496794362, 3.27431575724861398457916195238, 3.52641340079845831945129214393, 3.87563390138396654404110419693, 3.90413429356284829533504128080, 4.02640903312572756686300734110, 4.44499346451817828377566800751, 4.56702763736243982602026955342, 4.73377002026592167999445455014, 4.75070612325496286856383644143, 5.01349495829686994755413251962, 5.13133271252072893674056400176

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.