Properties

Label 1254.2.i.p
Level 12541254
Weight 22
Character orbit 1254.i
Analytic conductor 10.01310.013
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1254,2,Mod(463,1254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1254.463");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1254=231119 1254 = 2 \cdot 3 \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1254.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.013240413510.0132404135
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.2696112.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+5x4+18x28x+4 x^{6} - x^{5} + 5x^{4} + 18x^{2} - 8x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β41)q2+(β4+1)q3β4q4+(β5β4β1+1)q5+β4q6+(β3+2)q7+q8β4q9+(β5+β4++β1)q10+β4q99+O(q100) q + (\beta_{4} - 1) q^{2} + ( - \beta_{4} + 1) q^{3} - \beta_{4} q^{4} + (\beta_{5} - \beta_{4} - \beta_1 + 1) q^{5} + \beta_{4} q^{6} + (\beta_{3} + 2) q^{7} + q^{8} - \beta_{4} q^{9} + ( - \beta_{5} + \beta_{4} + \cdots + \beta_1) q^{10}+ \cdots - \beta_{4} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q3q2+3q33q4+2q5+3q6+12q7+6q83q9+2q10+6q116q12+3q136q142q153q162q17+6q18+3q194q20+3q99+O(q100) 6 q - 3 q^{2} + 3 q^{3} - 3 q^{4} + 2 q^{5} + 3 q^{6} + 12 q^{7} + 6 q^{8} - 3 q^{9} + 2 q^{10} + 6 q^{11} - 6 q^{12} + 3 q^{13} - 6 q^{14} - 2 q^{15} - 3 q^{16} - 2 q^{17} + 6 q^{18} + 3 q^{19} - 4 q^{20}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+5x4+18x28x+4 x^{6} - x^{5} + 5x^{4} + 18x^{2} - 8x + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν55ν4+25ν318ν2+8ν40)/82 ( \nu^{5} - 5\nu^{4} + 25\nu^{3} - 18\nu^{2} + 8\nu - 40 ) / 82 Copy content Toggle raw display
β3\beta_{3}== (2ν510ν4+9ν336ν2+16ν121)/41 ( 2\nu^{5} - 10\nu^{4} + 9\nu^{3} - 36\nu^{2} + 16\nu - 121 ) / 41 Copy content Toggle raw display
β4\beta_{4}== (10ν5+9ν445ν325ν2162ν+72)/82 ( -10\nu^{5} + 9\nu^{4} - 45\nu^{3} - 25\nu^{2} - 162\nu + 72 ) / 82 Copy content Toggle raw display
β5\beta_{5}== (26ν5+7ν4117ν365ν2454ν26)/82 ( -26\nu^{5} + 7\nu^{4} - 117\nu^{3} - 65\nu^{2} - 454\nu - 26 ) / 82 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β53β4β3 \beta_{5} - 3\beta_{4} - \beta_{3} Copy content Toggle raw display
ν3\nu^{3}== β3+4β21 -\beta_{3} + 4\beta_{2} - 1 Copy content Toggle raw display
ν4\nu^{4}== 5β5+13β42β113 -5\beta_{5} + 13\beta_{4} - 2\beta _1 - 13 Copy content Toggle raw display
ν5\nu^{5}== 7β5+11β4+7β318β218β1 -7\beta_{5} + 11\beta_{4} + 7\beta_{3} - 18\beta_{2} - 18\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1254Z)×\left(\mathbb{Z}/1254\mathbb{Z}\right)^\times.

nn 343343 419419 11231123
χ(n)\chi(n) 11 11 β4-\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
463.1
0.235342 + 0.407624i
1.17146 + 2.02903i
−0.906803 1.57063i
0.235342 0.407624i
1.17146 2.02903i
−0.906803 + 1.57063i
−0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −1.12457 1.94781i 0.500000 0.866025i −0.778457 1.00000 −0.500000 + 0.866025i −1.12457 + 1.94781i
463.2 −0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 0.573183 + 0.992782i 0.500000 0.866025i 4.48929 1.00000 −0.500000 + 0.866025i 0.573183 0.992782i
463.3 −0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 1.55139 + 2.68708i 0.500000 0.866025i 2.28917 1.00000 −0.500000 + 0.866025i 1.55139 2.68708i
1189.1 −0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i −1.12457 + 1.94781i 0.500000 + 0.866025i −0.778457 1.00000 −0.500000 0.866025i −1.12457 1.94781i
1189.2 −0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.573183 0.992782i 0.500000 + 0.866025i 4.48929 1.00000 −0.500000 0.866025i 0.573183 + 0.992782i
1189.3 −0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i 1.55139 2.68708i 0.500000 + 0.866025i 2.28917 1.00000 −0.500000 0.866025i 1.55139 + 2.68708i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 463.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1254.2.i.p 6
19.c even 3 1 inner 1254.2.i.p 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1254.2.i.p 6 1.a even 1 1 trivial
1254.2.i.p 6 19.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1254,[χ])S_{2}^{\mathrm{new}}(1254, [\chi]):

T562T55+10T544T53+52T5248T5+64 T_{5}^{6} - 2T_{5}^{5} + 10T_{5}^{4} - 4T_{5}^{3} + 52T_{5}^{2} - 48T_{5} + 64 Copy content Toggle raw display
T736T72+5T7+8 T_{7}^{3} - 6T_{7}^{2} + 5T_{7} + 8 Copy content Toggle raw display
T1363T135+45T134+1458T1321944T13+2916 T_{13}^{6} - 3T_{13}^{5} + 45T_{13}^{4} + 1458T_{13}^{2} - 1944T_{13} + 2916 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T+1)3 (T^{2} + T + 1)^{3} Copy content Toggle raw display
33 (T2T+1)3 (T^{2} - T + 1)^{3} Copy content Toggle raw display
55 T62T5++64 T^{6} - 2 T^{5} + \cdots + 64 Copy content Toggle raw display
77 (T36T2+5T+8)2 (T^{3} - 6 T^{2} + 5 T + 8)^{2} Copy content Toggle raw display
1111 (T1)6 (T - 1)^{6} Copy content Toggle raw display
1313 T63T5++2916 T^{6} - 3 T^{5} + \cdots + 2916 Copy content Toggle raw display
1717 T6+2T5++1936 T^{6} + 2 T^{5} + \cdots + 1936 Copy content Toggle raw display
1919 T63T5++6859 T^{6} - 3 T^{5} + \cdots + 6859 Copy content Toggle raw display
2323 T610T5++16 T^{6} - 10 T^{5} + \cdots + 16 Copy content Toggle raw display
2929 T63T5++11881 T^{6} - 3 T^{5} + \cdots + 11881 Copy content Toggle raw display
3131 (T3+10T2++16)2 (T^{3} + 10 T^{2} + \cdots + 16)^{2} Copy content Toggle raw display
3737 (T+4)6 (T + 4)^{6} Copy content Toggle raw display
4141 T6+8T5++16384 T^{6} + 8 T^{5} + \cdots + 16384 Copy content Toggle raw display
4343 T6+7T5++529 T^{6} + 7 T^{5} + \cdots + 529 Copy content Toggle raw display
4747 T67T5++94249 T^{6} - 7 T^{5} + \cdots + 94249 Copy content Toggle raw display
5353 T6+26T5++246016 T^{6} + 26 T^{5} + \cdots + 246016 Copy content Toggle raw display
5959 T6+2T5++256 T^{6} + 2 T^{5} + \cdots + 256 Copy content Toggle raw display
6161 T6+3T5++5776 T^{6} + 3 T^{5} + \cdots + 5776 Copy content Toggle raw display
6767 T6+6T5++46656 T^{6} + 6 T^{5} + \cdots + 46656 Copy content Toggle raw display
7171 T67T5++529 T^{6} - 7 T^{5} + \cdots + 529 Copy content Toggle raw display
7373 T6+6T5++760384 T^{6} + 6 T^{5} + \cdots + 760384 Copy content Toggle raw display
7979 T66T5++118336 T^{6} - 6 T^{5} + \cdots + 118336 Copy content Toggle raw display
8383 (T3+19T2++172)2 (T^{3} + 19 T^{2} + \cdots + 172)^{2} Copy content Toggle raw display
8989 T637T5++1993744 T^{6} - 37 T^{5} + \cdots + 1993744 Copy content Toggle raw display
9797 T6+T5++279841 T^{6} + T^{5} + \cdots + 279841 Copy content Toggle raw display
show more
show less