Properties

Label 1254.2.i.p
Level $1254$
Weight $2$
Character orbit 1254.i
Analytic conductor $10.013$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1254,2,Mod(463,1254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1254.463");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1254 = 2 \cdot 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1254.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0132404135\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.2696112.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} + 18x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} - 1) q^{2} + ( - \beta_{4} + 1) q^{3} - \beta_{4} q^{4} + (\beta_{5} - \beta_{4} - \beta_1 + 1) q^{5} + \beta_{4} q^{6} + (\beta_{3} + 2) q^{7} + q^{8} - \beta_{4} q^{9} + ( - \beta_{5} + \beta_{4} + \cdots + \beta_1) q^{10}+ \cdots - \beta_{4} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 3 q^{3} - 3 q^{4} + 2 q^{5} + 3 q^{6} + 12 q^{7} + 6 q^{8} - 3 q^{9} + 2 q^{10} + 6 q^{11} - 6 q^{12} + 3 q^{13} - 6 q^{14} - 2 q^{15} - 3 q^{16} - 2 q^{17} + 6 q^{18} + 3 q^{19} - 4 q^{20}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 5x^{4} + 18x^{2} - 8x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 5\nu^{4} + 25\nu^{3} - 18\nu^{2} + 8\nu - 40 ) / 82 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{5} - 10\nu^{4} + 9\nu^{3} - 36\nu^{2} + 16\nu - 121 ) / 41 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -10\nu^{5} + 9\nu^{4} - 45\nu^{3} - 25\nu^{2} - 162\nu + 72 ) / 82 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -26\nu^{5} + 7\nu^{4} - 117\nu^{3} - 65\nu^{2} - 454\nu - 26 ) / 82 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - 3\beta_{4} - \beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 4\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -5\beta_{5} + 13\beta_{4} - 2\beta _1 - 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{5} + 11\beta_{4} + 7\beta_{3} - 18\beta_{2} - 18\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1254\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(419\) \(1123\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
463.1
0.235342 + 0.407624i
1.17146 + 2.02903i
−0.906803 1.57063i
0.235342 0.407624i
1.17146 2.02903i
−0.906803 + 1.57063i
−0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −1.12457 1.94781i 0.500000 0.866025i −0.778457 1.00000 −0.500000 + 0.866025i −1.12457 + 1.94781i
463.2 −0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 0.573183 + 0.992782i 0.500000 0.866025i 4.48929 1.00000 −0.500000 + 0.866025i 0.573183 0.992782i
463.3 −0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 1.55139 + 2.68708i 0.500000 0.866025i 2.28917 1.00000 −0.500000 + 0.866025i 1.55139 2.68708i
1189.1 −0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i −1.12457 + 1.94781i 0.500000 + 0.866025i −0.778457 1.00000 −0.500000 0.866025i −1.12457 1.94781i
1189.2 −0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.573183 0.992782i 0.500000 + 0.866025i 4.48929 1.00000 −0.500000 0.866025i 0.573183 + 0.992782i
1189.3 −0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i 1.55139 2.68708i 0.500000 + 0.866025i 2.28917 1.00000 −0.500000 0.866025i 1.55139 + 2.68708i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 463.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1254.2.i.p 6
19.c even 3 1 inner 1254.2.i.p 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1254.2.i.p 6 1.a even 1 1 trivial
1254.2.i.p 6 19.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1254, [\chi])\):

\( T_{5}^{6} - 2T_{5}^{5} + 10T_{5}^{4} - 4T_{5}^{3} + 52T_{5}^{2} - 48T_{5} + 64 \) Copy content Toggle raw display
\( T_{7}^{3} - 6T_{7}^{2} + 5T_{7} + 8 \) Copy content Toggle raw display
\( T_{13}^{6} - 3T_{13}^{5} + 45T_{13}^{4} + 1458T_{13}^{2} - 1944T_{13} + 2916 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} - 2 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$7$ \( (T^{3} - 6 T^{2} + 5 T + 8)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots + 2916 \) Copy content Toggle raw display
$17$ \( T^{6} + 2 T^{5} + \cdots + 1936 \) Copy content Toggle raw display
$19$ \( T^{6} - 3 T^{5} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 10 T^{5} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{6} - 3 T^{5} + \cdots + 11881 \) Copy content Toggle raw display
$31$ \( (T^{3} + 10 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$37$ \( (T + 4)^{6} \) Copy content Toggle raw display
$41$ \( T^{6} + 8 T^{5} + \cdots + 16384 \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots + 529 \) Copy content Toggle raw display
$47$ \( T^{6} - 7 T^{5} + \cdots + 94249 \) Copy content Toggle raw display
$53$ \( T^{6} + 26 T^{5} + \cdots + 246016 \) Copy content Toggle raw display
$59$ \( T^{6} + 2 T^{5} + \cdots + 256 \) Copy content Toggle raw display
$61$ \( T^{6} + 3 T^{5} + \cdots + 5776 \) Copy content Toggle raw display
$67$ \( T^{6} + 6 T^{5} + \cdots + 46656 \) Copy content Toggle raw display
$71$ \( T^{6} - 7 T^{5} + \cdots + 529 \) Copy content Toggle raw display
$73$ \( T^{6} + 6 T^{5} + \cdots + 760384 \) Copy content Toggle raw display
$79$ \( T^{6} - 6 T^{5} + \cdots + 118336 \) Copy content Toggle raw display
$83$ \( (T^{3} + 19 T^{2} + \cdots + 172)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - 37 T^{5} + \cdots + 1993744 \) Copy content Toggle raw display
$97$ \( T^{6} + T^{5} + \cdots + 279841 \) Copy content Toggle raw display
show more
show less