L(s) = 1 | + (1.22 − 0.707i)2-s + (−2.97 − 0.371i)3-s + (0.999 − 1.73i)4-s + 8.56i·5-s + (−3.90 + 1.64i)6-s + (4.01 + 5.73i)7-s − 2.82i·8-s + (8.72 + 2.21i)9-s + (6.05 + 10.4i)10-s − 7.05i·11-s + (−3.62 + 4.78i)12-s + (7.43 + 12.8i)13-s + (8.97 + 4.18i)14-s + (3.18 − 25.4i)15-s + (−2.00 − 3.46i)16-s + (−12.4 + 7.18i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.992 − 0.123i)3-s + (0.249 − 0.433i)4-s + 1.71i·5-s + (−0.651 + 0.274i)6-s + (0.573 + 0.819i)7-s − 0.353i·8-s + (0.969 + 0.245i)9-s + (0.605 + 1.04i)10-s − 0.641i·11-s + (−0.301 + 0.398i)12-s + (0.571 + 0.990i)13-s + (0.640 + 0.298i)14-s + (0.212 − 1.69i)15-s + (−0.125 − 0.216i)16-s + (−0.732 + 0.422i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.714 - 0.699i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.714 - 0.699i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.36888 + 0.558493i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36888 + 0.558493i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 + 0.707i)T \) |
| 3 | \( 1 + (2.97 + 0.371i)T \) |
| 7 | \( 1 + (-4.01 - 5.73i)T \) |
good | 5 | \( 1 - 8.56iT - 25T^{2} \) |
| 11 | \( 1 + 7.05iT - 121T^{2} \) |
| 13 | \( 1 + (-7.43 - 12.8i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (12.4 - 7.18i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-9.66 + 16.7i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 - 39.3iT - 529T^{2} \) |
| 29 | \( 1 + (11.7 + 6.80i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-12.0 + 20.8i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-17.6 + 30.5i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-7.79 + 4.50i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-32.4 + 56.2i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-28.9 + 16.6i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-52.4 + 30.2i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (62.6 + 36.1i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-3.99 - 6.91i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-41.8 + 72.4i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 61.0iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (9.83 + 17.0i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-5.09 - 8.82i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-15.8 - 9.15i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (40.0 + 23.1i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (49.1 - 85.1i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.35842981852306864682135232397, −11.79793715259879522570290088743, −11.30415002070760890947208681400, −10.77153653273469338678598094478, −9.346951332945848526693499131445, −7.40732850669595698015930423675, −6.38677222243108101045271158029, −5.54634462409805606387295749554, −3.86367861381910705725530066262, −2.18301542618570927895562844812,
1.05861427945241083459247731185, 4.30236515473478709739661559302, 4.86991588381691882154501112322, 6.00966672174142014502513408449, 7.47998545251227795980294746690, 8.562894345754972877089413259801, 10.03775671315888042179308187997, 11.15439312928044761680322391456, 12.32446245054543953597406368564, 12.79931684698348193201809758737