L(s) = 1 | + (−0.5 + 0.866i)2-s + (−1.5 − 2.59i)3-s + (−0.499 − 0.866i)4-s + (2 − 3.46i)5-s + 3·6-s + 0.999·8-s + (−3 + 5.19i)9-s + (1.99 + 3.46i)10-s + (−0.5 − 0.866i)11-s + (−1.50 + 2.59i)12-s − 13-s − 12·15-s + (−0.5 + 0.866i)16-s + (−3 − 5.19i)18-s + (3 − 5.19i)19-s − 3.99·20-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.866 − 1.49i)3-s + (−0.249 − 0.433i)4-s + (0.894 − 1.54i)5-s + 1.22·6-s + 0.353·8-s + (−1 + 1.73i)9-s + (0.632 + 1.09i)10-s + (−0.150 − 0.261i)11-s + (−0.433 + 0.749i)12-s − 0.277·13-s − 3.09·15-s + (−0.125 + 0.216i)16-s + (−0.707 − 1.22i)18-s + (0.688 − 1.19i)19-s − 0.894·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1274 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8070926367\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8070926367\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 + (1.5 + 2.59i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-2 + 3.46i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.5 + 6.06i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + (3.5 + 6.06i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.5 - 7.79i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3T + 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (3.5 - 6.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5 - 8.66i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 16T + 71T^{2} \) |
| 73 | \( 1 + (2.5 + 4.33i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.5 - 9.52i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.021594127433278379638206563697, −8.382568948786264269487885069334, −7.52797768626457675565164781243, −6.73565909885860207790899875734, −5.96928570800475926006589990578, −5.28574528877152935914182696175, −4.71016423673237050421320595122, −2.37640809178145175169787267256, −1.28424668194566112350330942710, −0.45543412837843330237426882154,
1.92614253494612465849687376707, 3.30293151351504200317268486616, 3.70039284966342558337052914706, 5.21295223087484650788380698945, 5.62392069734430319538721511653, 6.74344230799443447443386479398, 7.55132031901874429827242824087, 9.051353354120912711582417601800, 9.691263019391763073838050297185, 10.13371298581512180636247451432