Properties

Label 1274.2.f.b
Level $1274$
Weight $2$
Character orbit 1274.f
Analytic conductor $10.173$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1274,2,Mod(79,1274)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1274, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1274.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{2} + (3 \zeta_{6} - 3) q^{3} + (\zeta_{6} - 1) q^{4} + 4 \zeta_{6} q^{5} + 3 q^{6} + q^{8} - 6 \zeta_{6} q^{9} + ( - 4 \zeta_{6} + 4) q^{10} + (\zeta_{6} - 1) q^{11} - 3 \zeta_{6} q^{12} + \cdots + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 3 q^{3} - q^{4} + 4 q^{5} + 6 q^{6} + 2 q^{8} - 6 q^{9} + 4 q^{10} - q^{11} - 3 q^{12} - 2 q^{13} - 24 q^{15} - q^{16} - 6 q^{18} + 6 q^{19} - 8 q^{20} + 2 q^{22} + 7 q^{23} - 3 q^{24}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 + 0.866025i −1.50000 2.59808i −0.500000 0.866025i 2.00000 3.46410i 3.00000 0 1.00000 −3.00000 + 5.19615i 2.00000 + 3.46410i
1145.1 −0.500000 0.866025i −1.50000 + 2.59808i −0.500000 + 0.866025i 2.00000 + 3.46410i 3.00000 0 1.00000 −3.00000 5.19615i 2.00000 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.f.b 2
7.b odd 2 1 1274.2.f.k 2
7.c even 3 1 182.2.a.e 1
7.c even 3 1 inner 1274.2.f.b 2
7.d odd 6 1 1274.2.a.h 1
7.d odd 6 1 1274.2.f.k 2
21.h odd 6 1 1638.2.a.j 1
28.g odd 6 1 1456.2.a.a 1
35.j even 6 1 4550.2.a.a 1
56.k odd 6 1 5824.2.a.bf 1
56.p even 6 1 5824.2.a.b 1
91.r even 6 1 2366.2.a.h 1
91.z odd 12 2 2366.2.d.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.a.e 1 7.c even 3 1
1274.2.a.h 1 7.d odd 6 1
1274.2.f.b 2 1.a even 1 1 trivial
1274.2.f.b 2 7.c even 3 1 inner
1274.2.f.k 2 7.b odd 2 1
1274.2.f.k 2 7.d odd 6 1
1456.2.a.a 1 28.g odd 6 1
1638.2.a.j 1 21.h odd 6 1
2366.2.a.h 1 91.r even 6 1
2366.2.d.j 2 91.z odd 12 2
4550.2.a.a 1 35.j even 6 1
5824.2.a.b 1 56.p even 6 1
5824.2.a.bf 1 56.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1274, [\chi])\):

\( T_{3}^{2} + 3T_{3} + 9 \) Copy content Toggle raw display
\( T_{5}^{2} - 4T_{5} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} + T_{11} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$23$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$29$ \( (T + 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$37$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$41$ \( (T + 3)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$61$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$71$ \( (T - 16)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$79$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$97$ \( (T + 1)^{2} \) Copy content Toggle raw display
show more
show less