Properties

Label 1274.2.f.b
Level 12741274
Weight 22
Character orbit 1274.f
Analytic conductor 10.17310.173
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1274,2,Mod(79,1274)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1274, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1274.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1274=27213 1274 = 2 \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1274.f (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.172941217510.1729412175
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ6q2+(3ζ63)q3+(ζ61)q4+4ζ6q5+3q6+q86ζ6q9+(4ζ6+4)q10+(ζ61)q113ζ6q12++6q99+O(q100) q - \zeta_{6} q^{2} + (3 \zeta_{6} - 3) q^{3} + (\zeta_{6} - 1) q^{4} + 4 \zeta_{6} q^{5} + 3 q^{6} + q^{8} - 6 \zeta_{6} q^{9} + ( - 4 \zeta_{6} + 4) q^{10} + (\zeta_{6} - 1) q^{11} - 3 \zeta_{6} q^{12} + \cdots + 6 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq23q3q4+4q5+6q6+2q86q9+4q10q113q122q1324q15q166q18+6q198q20+2q22+7q233q24++12q99+O(q100) 2 q - q^{2} - 3 q^{3} - q^{4} + 4 q^{5} + 6 q^{6} + 2 q^{8} - 6 q^{9} + 4 q^{10} - q^{11} - 3 q^{12} - 2 q^{13} - 24 q^{15} - q^{16} - 6 q^{18} + 6 q^{19} - 8 q^{20} + 2 q^{22} + 7 q^{23} - 3 q^{24}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1274Z)×\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times.

nn 197197 885885
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
79.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 + 0.866025i −1.50000 2.59808i −0.500000 0.866025i 2.00000 3.46410i 3.00000 0 1.00000 −3.00000 + 5.19615i 2.00000 + 3.46410i
1145.1 −0.500000 0.866025i −1.50000 + 2.59808i −0.500000 + 0.866025i 2.00000 + 3.46410i 3.00000 0 1.00000 −3.00000 5.19615i 2.00000 3.46410i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.f.b 2
7.b odd 2 1 1274.2.f.k 2
7.c even 3 1 182.2.a.e 1
7.c even 3 1 inner 1274.2.f.b 2
7.d odd 6 1 1274.2.a.h 1
7.d odd 6 1 1274.2.f.k 2
21.h odd 6 1 1638.2.a.j 1
28.g odd 6 1 1456.2.a.a 1
35.j even 6 1 4550.2.a.a 1
56.k odd 6 1 5824.2.a.bf 1
56.p even 6 1 5824.2.a.b 1
91.r even 6 1 2366.2.a.h 1
91.z odd 12 2 2366.2.d.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.a.e 1 7.c even 3 1
1274.2.a.h 1 7.d odd 6 1
1274.2.f.b 2 1.a even 1 1 trivial
1274.2.f.b 2 7.c even 3 1 inner
1274.2.f.k 2 7.b odd 2 1
1274.2.f.k 2 7.d odd 6 1
1456.2.a.a 1 28.g odd 6 1
1638.2.a.j 1 21.h odd 6 1
2366.2.a.h 1 91.r even 6 1
2366.2.d.j 2 91.z odd 12 2
4550.2.a.a 1 35.j even 6 1
5824.2.a.b 1 56.p even 6 1
5824.2.a.bf 1 56.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1274,[χ])S_{2}^{\mathrm{new}}(1274, [\chi]):

T32+3T3+9 T_{3}^{2} + 3T_{3} + 9 Copy content Toggle raw display
T524T5+16 T_{5}^{2} - 4T_{5} + 16 Copy content Toggle raw display
T112+T11+1 T_{11}^{2} + T_{11} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
55 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1313 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
2323 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
2929 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
3131 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
3737 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
4141 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
4343 (T4)2 (T - 4)^{2} Copy content Toggle raw display
4747 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
6161 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
6767 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7171 (T16)2 (T - 16)^{2} Copy content Toggle raw display
7373 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
7979 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
9797 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
show more
show less