L(s) = 1 | − 4.24·2-s + 3·3-s + 9.99·4-s − 12.7·6-s + 20.9·7-s − 8.48·8-s + 9·9-s + 16.0·11-s + 29.9·12-s + 34.9·13-s − 88.9·14-s − 44.0·16-s + 17·17-s − 38.1·18-s − 80.8·19-s + 62.9·21-s − 68.0·22-s + 115.·23-s − 25.4·24-s − 148.·26-s + 27·27-s + 209.·28-s + 154.·29-s + 299.·31-s + 254.·32-s + 48.0·33-s − 72.1·34-s + ⋯ |
L(s) = 1 | − 1.49·2-s + 0.577·3-s + 1.24·4-s − 0.866·6-s + 1.13·7-s − 0.374·8-s + 0.333·9-s + 0.439·11-s + 0.721·12-s + 0.745·13-s − 1.69·14-s − 0.687·16-s + 0.242·17-s − 0.500·18-s − 0.976·19-s + 0.653·21-s − 0.659·22-s + 1.05·23-s − 0.216·24-s − 1.11·26-s + 0.192·27-s + 1.41·28-s + 0.986·29-s + 1.73·31-s + 1.40·32-s + 0.253·33-s − 0.363·34-s + ⋯ |
Λ(s)=(=(1275s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1275s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.678641553 |
L(21) |
≈ |
1.678641553 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1 |
| 17 | 1−17T |
good | 2 | 1+4.24T+8T2 |
| 7 | 1−20.9T+343T2 |
| 11 | 1−16.0T+1.33e3T2 |
| 13 | 1−34.9T+2.19e3T2 |
| 19 | 1+80.8T+6.85e3T2 |
| 23 | 1−115.T+1.21e4T2 |
| 29 | 1−154.T+2.43e4T2 |
| 31 | 1−299.T+2.97e4T2 |
| 37 | 1+315.T+5.06e4T2 |
| 41 | 1−132.T+6.89e4T2 |
| 43 | 1−23.1T+7.95e4T2 |
| 47 | 1+260.T+1.03e5T2 |
| 53 | 1−676.T+1.48e5T2 |
| 59 | 1−629.T+2.05e5T2 |
| 61 | 1+461.T+2.26e5T2 |
| 67 | 1−789.T+3.00e5T2 |
| 71 | 1+686.T+3.57e5T2 |
| 73 | 1+484.T+3.89e5T2 |
| 79 | 1−254T+4.93e5T2 |
| 83 | 1+548.T+5.71e5T2 |
| 89 | 1−925.T+7.04e5T2 |
| 97 | 1+732.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.003535998651876752019289985465, −8.516287773935220348945673348710, −8.107784427391948959391271198791, −7.12978735617992524184432187813, −6.41880477895644631301898358519, −4.98333828728322345248571852349, −4.08060461168740891044659634658, −2.68299052140633936988185510876, −1.62132933971087292184976279183, −0.879154950982805729397334529224,
0.879154950982805729397334529224, 1.62132933971087292184976279183, 2.68299052140633936988185510876, 4.08060461168740891044659634658, 4.98333828728322345248571852349, 6.41880477895644631301898358519, 7.12978735617992524184432187813, 8.107784427391948959391271198791, 8.516287773935220348945673348710, 9.003535998651876752019289985465