Properties

Label 1275.4.a.m.1.1
Level $1275$
Weight $4$
Character 1275.1
Self dual yes
Analytic conductor $75.227$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,4,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.2274352573\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.24264 q^{2} +3.00000 q^{3} +10.0000 q^{4} -12.7279 q^{6} +20.9706 q^{7} -8.48528 q^{8} +9.00000 q^{9} +16.0294 q^{11} +30.0000 q^{12} +34.9411 q^{13} -88.9706 q^{14} -44.0000 q^{16} +17.0000 q^{17} -38.1838 q^{18} -80.8823 q^{19} +62.9117 q^{21} -68.0071 q^{22} +115.971 q^{23} -25.4558 q^{24} -148.243 q^{26} +27.0000 q^{27} +209.706 q^{28} +154.118 q^{29} +299.941 q^{31} +254.558 q^{32} +48.0883 q^{33} -72.1249 q^{34} +90.0000 q^{36} -315.529 q^{37} +343.154 q^{38} +104.823 q^{39} +132.265 q^{41} -266.912 q^{42} +23.1177 q^{43} +160.294 q^{44} -492.021 q^{46} -260.912 q^{47} -132.000 q^{48} +96.7645 q^{49} +51.0000 q^{51} +349.411 q^{52} +676.087 q^{53} -114.551 q^{54} -177.941 q^{56} -242.647 q^{57} -653.866 q^{58} +629.294 q^{59} -461.852 q^{61} -1272.54 q^{62} +188.735 q^{63} -728.000 q^{64} -204.021 q^{66} +789.470 q^{67} +170.000 q^{68} +347.912 q^{69} -686.412 q^{71} -76.3675 q^{72} -484.912 q^{73} +1338.68 q^{74} -808.823 q^{76} +336.146 q^{77} -444.728 q^{78} +254.000 q^{79} +81.0000 q^{81} -561.153 q^{82} -548.912 q^{83} +629.117 q^{84} -98.0803 q^{86} +462.353 q^{87} -136.014 q^{88} +925.145 q^{89} +732.735 q^{91} +1159.71 q^{92} +899.823 q^{93} +1106.95 q^{94} +763.675 q^{96} -732.617 q^{97} -410.537 q^{98} +144.265 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 20 q^{4} + 8 q^{7} + 18 q^{9} + 66 q^{11} + 60 q^{12} + 2 q^{13} - 144 q^{14} - 88 q^{16} + 34 q^{17} - 26 q^{19} + 24 q^{21} + 144 q^{22} + 198 q^{23} - 288 q^{26} + 54 q^{27} + 80 q^{28}+ \cdots + 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.24264 −1.50000 −0.750000 0.661438i \(-0.769947\pi\)
−0.750000 + 0.661438i \(0.769947\pi\)
\(3\) 3.00000 0.577350
\(4\) 10.0000 1.25000
\(5\) 0 0
\(6\) −12.7279 −0.866025
\(7\) 20.9706 1.13230 0.566152 0.824301i \(-0.308432\pi\)
0.566152 + 0.824301i \(0.308432\pi\)
\(8\) −8.48528 −0.375000
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 16.0294 0.439369 0.219684 0.975571i \(-0.429497\pi\)
0.219684 + 0.975571i \(0.429497\pi\)
\(12\) 30.0000 0.721688
\(13\) 34.9411 0.745456 0.372728 0.927941i \(-0.378422\pi\)
0.372728 + 0.927941i \(0.378422\pi\)
\(14\) −88.9706 −1.69846
\(15\) 0 0
\(16\) −44.0000 −0.687500
\(17\) 17.0000 0.242536
\(18\) −38.1838 −0.500000
\(19\) −80.8823 −0.976614 −0.488307 0.872672i \(-0.662385\pi\)
−0.488307 + 0.872672i \(0.662385\pi\)
\(20\) 0 0
\(21\) 62.9117 0.653736
\(22\) −68.0071 −0.659053
\(23\) 115.971 1.05137 0.525686 0.850679i \(-0.323809\pi\)
0.525686 + 0.850679i \(0.323809\pi\)
\(24\) −25.4558 −0.216506
\(25\) 0 0
\(26\) −148.243 −1.11818
\(27\) 27.0000 0.192450
\(28\) 209.706 1.41538
\(29\) 154.118 0.986860 0.493430 0.869785i \(-0.335743\pi\)
0.493430 + 0.869785i \(0.335743\pi\)
\(30\) 0 0
\(31\) 299.941 1.73777 0.868887 0.495010i \(-0.164836\pi\)
0.868887 + 0.495010i \(0.164836\pi\)
\(32\) 254.558 1.40625
\(33\) 48.0883 0.253670
\(34\) −72.1249 −0.363803
\(35\) 0 0
\(36\) 90.0000 0.416667
\(37\) −315.529 −1.40196 −0.700982 0.713179i \(-0.747255\pi\)
−0.700982 + 0.713179i \(0.747255\pi\)
\(38\) 343.154 1.46492
\(39\) 104.823 0.430389
\(40\) 0 0
\(41\) 132.265 0.503813 0.251906 0.967752i \(-0.418943\pi\)
0.251906 + 0.967752i \(0.418943\pi\)
\(42\) −266.912 −0.980604
\(43\) 23.1177 0.0819866 0.0409933 0.999159i \(-0.486948\pi\)
0.0409933 + 0.999159i \(0.486948\pi\)
\(44\) 160.294 0.549211
\(45\) 0 0
\(46\) −492.021 −1.57706
\(47\) −260.912 −0.809742 −0.404871 0.914374i \(-0.632684\pi\)
−0.404871 + 0.914374i \(0.632684\pi\)
\(48\) −132.000 −0.396928
\(49\) 96.7645 0.282112
\(50\) 0 0
\(51\) 51.0000 0.140028
\(52\) 349.411 0.931820
\(53\) 676.087 1.75222 0.876111 0.482110i \(-0.160129\pi\)
0.876111 + 0.482110i \(0.160129\pi\)
\(54\) −114.551 −0.288675
\(55\) 0 0
\(56\) −177.941 −0.424614
\(57\) −242.647 −0.563848
\(58\) −653.866 −1.48029
\(59\) 629.294 1.38859 0.694297 0.719689i \(-0.255715\pi\)
0.694297 + 0.719689i \(0.255715\pi\)
\(60\) 0 0
\(61\) −461.852 −0.969411 −0.484706 0.874677i \(-0.661073\pi\)
−0.484706 + 0.874677i \(0.661073\pi\)
\(62\) −1272.54 −2.60666
\(63\) 188.735 0.377435
\(64\) −728.000 −1.42188
\(65\) 0 0
\(66\) −204.021 −0.380505
\(67\) 789.470 1.43954 0.719770 0.694213i \(-0.244247\pi\)
0.719770 + 0.694213i \(0.244247\pi\)
\(68\) 170.000 0.303170
\(69\) 347.912 0.607009
\(70\) 0 0
\(71\) −686.412 −1.14735 −0.573677 0.819082i \(-0.694484\pi\)
−0.573677 + 0.819082i \(0.694484\pi\)
\(72\) −76.3675 −0.125000
\(73\) −484.912 −0.777461 −0.388730 0.921352i \(-0.627086\pi\)
−0.388730 + 0.921352i \(0.627086\pi\)
\(74\) 1338.68 2.10295
\(75\) 0 0
\(76\) −808.823 −1.22077
\(77\) 336.146 0.497499
\(78\) −444.728 −0.645584
\(79\) 254.000 0.361737 0.180869 0.983507i \(-0.442109\pi\)
0.180869 + 0.983507i \(0.442109\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −561.153 −0.755719
\(83\) −548.912 −0.725914 −0.362957 0.931806i \(-0.618233\pi\)
−0.362957 + 0.931806i \(0.618233\pi\)
\(84\) 629.117 0.817170
\(85\) 0 0
\(86\) −98.0803 −0.122980
\(87\) 462.353 0.569764
\(88\) −136.014 −0.164763
\(89\) 925.145 1.10186 0.550928 0.834553i \(-0.314274\pi\)
0.550928 + 0.834553i \(0.314274\pi\)
\(90\) 0 0
\(91\) 732.735 0.844082
\(92\) 1159.71 1.31421
\(93\) 899.823 1.00330
\(94\) 1106.95 1.21461
\(95\) 0 0
\(96\) 763.675 0.811899
\(97\) −732.617 −0.766866 −0.383433 0.923569i \(-0.625258\pi\)
−0.383433 + 0.923569i \(0.625258\pi\)
\(98\) −410.537 −0.423168
\(99\) 144.265 0.146456
\(100\) 0 0
\(101\) −128.528 −0.126624 −0.0633120 0.997994i \(-0.520166\pi\)
−0.0633120 + 0.997994i \(0.520166\pi\)
\(102\) −216.375 −0.210042
\(103\) −5.35325 −0.00512108 −0.00256054 0.999997i \(-0.500815\pi\)
−0.00256054 + 0.999997i \(0.500815\pi\)
\(104\) −296.485 −0.279546
\(105\) 0 0
\(106\) −2868.40 −2.62833
\(107\) −473.382 −0.427697 −0.213848 0.976867i \(-0.568600\pi\)
−0.213848 + 0.976867i \(0.568600\pi\)
\(108\) 270.000 0.240563
\(109\) −352.353 −0.309627 −0.154813 0.987944i \(-0.549478\pi\)
−0.154813 + 0.987944i \(0.549478\pi\)
\(110\) 0 0
\(111\) −946.587 −0.809424
\(112\) −922.705 −0.778459
\(113\) 733.617 0.610734 0.305367 0.952235i \(-0.401221\pi\)
0.305367 + 0.952235i \(0.401221\pi\)
\(114\) 1029.46 0.845772
\(115\) 0 0
\(116\) 1541.18 1.23358
\(117\) 314.470 0.248485
\(118\) −2669.87 −2.08289
\(119\) 356.500 0.274624
\(120\) 0 0
\(121\) −1074.06 −0.806955
\(122\) 1959.47 1.45412
\(123\) 396.795 0.290876
\(124\) 2999.41 2.17222
\(125\) 0 0
\(126\) −800.735 −0.566152
\(127\) −340.410 −0.237846 −0.118923 0.992903i \(-0.537944\pi\)
−0.118923 + 0.992903i \(0.537944\pi\)
\(128\) 1052.17 0.726562
\(129\) 69.3532 0.0473350
\(130\) 0 0
\(131\) −2133.85 −1.42317 −0.711586 0.702599i \(-0.752023\pi\)
−0.711586 + 0.702599i \(0.752023\pi\)
\(132\) 480.883 0.317087
\(133\) −1696.15 −1.10582
\(134\) −3349.44 −2.15931
\(135\) 0 0
\(136\) −144.250 −0.0909509
\(137\) −55.1455 −0.0343897 −0.0171949 0.999852i \(-0.505474\pi\)
−0.0171949 + 0.999852i \(0.505474\pi\)
\(138\) −1476.06 −0.910514
\(139\) 256.266 0.156375 0.0781877 0.996939i \(-0.475087\pi\)
0.0781877 + 0.996939i \(0.475087\pi\)
\(140\) 0 0
\(141\) −782.735 −0.467505
\(142\) 2912.20 1.72103
\(143\) 560.087 0.327530
\(144\) −396.000 −0.229167
\(145\) 0 0
\(146\) 2057.31 1.16619
\(147\) 290.294 0.162878
\(148\) −3155.29 −1.75245
\(149\) −84.3836 −0.0463958 −0.0231979 0.999731i \(-0.507385\pi\)
−0.0231979 + 0.999731i \(0.507385\pi\)
\(150\) 0 0
\(151\) 1051.65 0.566767 0.283383 0.959007i \(-0.408543\pi\)
0.283383 + 0.959007i \(0.408543\pi\)
\(152\) 686.309 0.366230
\(153\) 153.000 0.0808452
\(154\) −1426.15 −0.746249
\(155\) 0 0
\(156\) 1048.23 0.537986
\(157\) −1587.47 −0.806968 −0.403484 0.914987i \(-0.632201\pi\)
−0.403484 + 0.914987i \(0.632201\pi\)
\(158\) −1077.63 −0.542606
\(159\) 2028.26 1.01165
\(160\) 0 0
\(161\) 2431.97 1.19047
\(162\) −343.654 −0.166667
\(163\) −1749.59 −0.840727 −0.420363 0.907356i \(-0.638097\pi\)
−0.420363 + 0.907356i \(0.638097\pi\)
\(164\) 1322.65 0.629766
\(165\) 0 0
\(166\) 2328.84 1.08887
\(167\) 1624.21 0.752604 0.376302 0.926497i \(-0.377196\pi\)
0.376302 + 0.926497i \(0.377196\pi\)
\(168\) −533.823 −0.245151
\(169\) −976.118 −0.444296
\(170\) 0 0
\(171\) −727.940 −0.325538
\(172\) 231.177 0.102483
\(173\) 3734.50 1.64120 0.820602 0.571500i \(-0.193638\pi\)
0.820602 + 0.571500i \(0.193638\pi\)
\(174\) −1961.60 −0.854646
\(175\) 0 0
\(176\) −705.295 −0.302066
\(177\) 1887.88 0.801705
\(178\) −3925.06 −1.65278
\(179\) −1434.65 −0.599053 −0.299526 0.954088i \(-0.596829\pi\)
−0.299526 + 0.954088i \(0.596829\pi\)
\(180\) 0 0
\(181\) −219.263 −0.0900426 −0.0450213 0.998986i \(-0.514336\pi\)
−0.0450213 + 0.998986i \(0.514336\pi\)
\(182\) −3108.73 −1.26612
\(183\) −1385.56 −0.559690
\(184\) −984.043 −0.394264
\(185\) 0 0
\(186\) −3817.63 −1.50496
\(187\) 272.500 0.106563
\(188\) −2609.12 −1.01218
\(189\) 566.205 0.217912
\(190\) 0 0
\(191\) −3116.44 −1.18062 −0.590308 0.807178i \(-0.700994\pi\)
−0.590308 + 0.807178i \(0.700994\pi\)
\(192\) −2184.00 −0.820920
\(193\) 3921.82 1.46269 0.731344 0.682009i \(-0.238894\pi\)
0.731344 + 0.682009i \(0.238894\pi\)
\(194\) 3108.23 1.15030
\(195\) 0 0
\(196\) 967.645 0.352640
\(197\) −3141.68 −1.13622 −0.568110 0.822953i \(-0.692325\pi\)
−0.568110 + 0.822953i \(0.692325\pi\)
\(198\) −612.064 −0.219684
\(199\) 1832.79 0.652880 0.326440 0.945218i \(-0.394151\pi\)
0.326440 + 0.945218i \(0.394151\pi\)
\(200\) 0 0
\(201\) 2368.41 0.831118
\(202\) 545.299 0.189936
\(203\) 3231.94 1.11743
\(204\) 510.000 0.175035
\(205\) 0 0
\(206\) 22.7119 0.00768162
\(207\) 1043.74 0.350457
\(208\) −1537.41 −0.512501
\(209\) −1296.50 −0.429094
\(210\) 0 0
\(211\) 4928.41 1.60799 0.803994 0.594637i \(-0.202704\pi\)
0.803994 + 0.594637i \(0.202704\pi\)
\(212\) 6760.87 2.19028
\(213\) −2059.24 −0.662425
\(214\) 2008.39 0.641545
\(215\) 0 0
\(216\) −229.103 −0.0721688
\(217\) 6289.93 1.96769
\(218\) 1494.91 0.464440
\(219\) −1454.74 −0.448867
\(220\) 0 0
\(221\) 593.999 0.180800
\(222\) 4016.03 1.21414
\(223\) 75.4727 0.0226638 0.0113319 0.999936i \(-0.496393\pi\)
0.0113319 + 0.999936i \(0.496393\pi\)
\(224\) 5338.23 1.59230
\(225\) 0 0
\(226\) −3112.47 −0.916101
\(227\) 1629.97 0.476587 0.238293 0.971193i \(-0.423412\pi\)
0.238293 + 0.971193i \(0.423412\pi\)
\(228\) −2426.47 −0.704810
\(229\) 2000.35 0.577235 0.288617 0.957445i \(-0.406804\pi\)
0.288617 + 0.957445i \(0.406804\pi\)
\(230\) 0 0
\(231\) 1008.44 0.287231
\(232\) −1307.73 −0.370073
\(233\) 4225.26 1.18801 0.594004 0.804462i \(-0.297546\pi\)
0.594004 + 0.804462i \(0.297546\pi\)
\(234\) −1334.18 −0.372728
\(235\) 0 0
\(236\) 6292.94 1.73574
\(237\) 762.000 0.208849
\(238\) −1512.50 −0.411936
\(239\) −1614.97 −0.437086 −0.218543 0.975827i \(-0.570130\pi\)
−0.218543 + 0.975827i \(0.570130\pi\)
\(240\) 0 0
\(241\) −6761.67 −1.80729 −0.903646 0.428280i \(-0.859120\pi\)
−0.903646 + 0.428280i \(0.859120\pi\)
\(242\) 4556.84 1.21043
\(243\) 243.000 0.0641500
\(244\) −4618.52 −1.21176
\(245\) 0 0
\(246\) −1683.46 −0.436314
\(247\) −2826.12 −0.728022
\(248\) −2545.08 −0.651666
\(249\) −1646.74 −0.419107
\(250\) 0 0
\(251\) 2880.29 0.724313 0.362156 0.932117i \(-0.382041\pi\)
0.362156 + 0.932117i \(0.382041\pi\)
\(252\) 1887.35 0.471793
\(253\) 1858.94 0.461940
\(254\) 1444.24 0.356769
\(255\) 0 0
\(256\) 1360.00 0.332031
\(257\) 1460.44 0.354474 0.177237 0.984168i \(-0.443284\pi\)
0.177237 + 0.984168i \(0.443284\pi\)
\(258\) −294.241 −0.0710025
\(259\) −6616.82 −1.58745
\(260\) 0 0
\(261\) 1387.06 0.328953
\(262\) 9053.17 2.13476
\(263\) 7601.29 1.78219 0.891094 0.453819i \(-0.149939\pi\)
0.891094 + 0.453819i \(0.149939\pi\)
\(264\) −408.043 −0.0951261
\(265\) 0 0
\(266\) 7196.14 1.65874
\(267\) 2775.44 0.636157
\(268\) 7894.70 1.79942
\(269\) 6896.26 1.56309 0.781547 0.623846i \(-0.214431\pi\)
0.781547 + 0.623846i \(0.214431\pi\)
\(270\) 0 0
\(271\) 849.234 0.190359 0.0951795 0.995460i \(-0.469658\pi\)
0.0951795 + 0.995460i \(0.469658\pi\)
\(272\) −748.000 −0.166743
\(273\) 2198.21 0.487331
\(274\) 233.962 0.0515846
\(275\) 0 0
\(276\) 3479.12 0.758762
\(277\) −4080.09 −0.885013 −0.442507 0.896765i \(-0.645911\pi\)
−0.442507 + 0.896765i \(0.645911\pi\)
\(278\) −1087.24 −0.234563
\(279\) 2699.47 0.579258
\(280\) 0 0
\(281\) 4967.90 1.05466 0.527331 0.849660i \(-0.323193\pi\)
0.527331 + 0.849660i \(0.323193\pi\)
\(282\) 3320.86 0.701257
\(283\) 1475.83 0.309996 0.154998 0.987915i \(-0.450463\pi\)
0.154998 + 0.987915i \(0.450463\pi\)
\(284\) −6864.12 −1.43419
\(285\) 0 0
\(286\) −2376.25 −0.491295
\(287\) 2773.67 0.570469
\(288\) 2291.03 0.468750
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) −2197.85 −0.442750
\(292\) −4849.12 −0.971826
\(293\) −521.056 −0.103892 −0.0519461 0.998650i \(-0.516542\pi\)
−0.0519461 + 0.998650i \(0.516542\pi\)
\(294\) −1231.61 −0.244316
\(295\) 0 0
\(296\) 2677.35 0.525736
\(297\) 432.795 0.0845566
\(298\) 358.009 0.0695937
\(299\) 4052.14 0.783751
\(300\) 0 0
\(301\) 484.792 0.0928337
\(302\) −4461.76 −0.850150
\(303\) −385.584 −0.0731064
\(304\) 3558.82 0.671422
\(305\) 0 0
\(306\) −649.124 −0.121268
\(307\) 1718.23 0.319429 0.159715 0.987163i \(-0.448943\pi\)
0.159715 + 0.987163i \(0.448943\pi\)
\(308\) 3361.46 0.621874
\(309\) −16.0597 −0.00295666
\(310\) 0 0
\(311\) 4916.05 0.896347 0.448173 0.893947i \(-0.352075\pi\)
0.448173 + 0.893947i \(0.352075\pi\)
\(312\) −889.456 −0.161396
\(313\) −7375.84 −1.33197 −0.665986 0.745964i \(-0.731989\pi\)
−0.665986 + 0.745964i \(0.731989\pi\)
\(314\) 6735.07 1.21045
\(315\) 0 0
\(316\) 2540.00 0.452171
\(317\) −522.706 −0.0926124 −0.0463062 0.998927i \(-0.514745\pi\)
−0.0463062 + 0.998927i \(0.514745\pi\)
\(318\) −8605.19 −1.51747
\(319\) 2470.42 0.433596
\(320\) 0 0
\(321\) −1420.15 −0.246931
\(322\) −10318.0 −1.78571
\(323\) −1375.00 −0.236864
\(324\) 810.000 0.138889
\(325\) 0 0
\(326\) 7422.88 1.26109
\(327\) −1057.06 −0.178763
\(328\) −1122.31 −0.188930
\(329\) −5471.46 −0.916874
\(330\) 0 0
\(331\) 5016.46 0.833020 0.416510 0.909131i \(-0.363253\pi\)
0.416510 + 0.909131i \(0.363253\pi\)
\(332\) −5489.12 −0.907393
\(333\) −2839.76 −0.467321
\(334\) −6890.92 −1.12891
\(335\) 0 0
\(336\) −2768.11 −0.449443
\(337\) 10810.8 1.74748 0.873741 0.486392i \(-0.161687\pi\)
0.873741 + 0.486392i \(0.161687\pi\)
\(338\) 4141.32 0.666444
\(339\) 2200.85 0.352607
\(340\) 0 0
\(341\) 4807.89 0.763524
\(342\) 3088.39 0.488307
\(343\) −5163.70 −0.812867
\(344\) −196.161 −0.0307450
\(345\) 0 0
\(346\) −15844.1 −2.46181
\(347\) 4137.35 0.640070 0.320035 0.947406i \(-0.396305\pi\)
0.320035 + 0.947406i \(0.396305\pi\)
\(348\) 4623.53 0.712205
\(349\) 7531.11 1.15510 0.577552 0.816354i \(-0.304008\pi\)
0.577552 + 0.816354i \(0.304008\pi\)
\(350\) 0 0
\(351\) 943.410 0.143463
\(352\) 4080.43 0.617862
\(353\) 4872.29 0.734634 0.367317 0.930096i \(-0.380276\pi\)
0.367317 + 0.930096i \(0.380276\pi\)
\(354\) −8009.60 −1.20256
\(355\) 0 0
\(356\) 9251.45 1.37732
\(357\) 1069.50 0.158554
\(358\) 6086.69 0.898579
\(359\) −31.9429 −0.00469604 −0.00234802 0.999997i \(-0.500747\pi\)
−0.00234802 + 0.999997i \(0.500747\pi\)
\(360\) 0 0
\(361\) −317.061 −0.0462256
\(362\) 930.255 0.135064
\(363\) −3222.17 −0.465896
\(364\) 7327.35 1.05510
\(365\) 0 0
\(366\) 5878.42 0.839535
\(367\) −2262.42 −0.321791 −0.160895 0.986971i \(-0.551438\pi\)
−0.160895 + 0.986971i \(0.551438\pi\)
\(368\) −5102.70 −0.722818
\(369\) 1190.38 0.167938
\(370\) 0 0
\(371\) 14177.9 1.98405
\(372\) 8998.23 1.25413
\(373\) 5788.70 0.803559 0.401780 0.915736i \(-0.368392\pi\)
0.401780 + 0.915736i \(0.368392\pi\)
\(374\) −1156.12 −0.159844
\(375\) 0 0
\(376\) 2213.91 0.303653
\(377\) 5385.05 0.735661
\(378\) −2402.21 −0.326868
\(379\) 10940.9 1.48284 0.741420 0.671041i \(-0.234153\pi\)
0.741420 + 0.671041i \(0.234153\pi\)
\(380\) 0 0
\(381\) −1021.23 −0.137321
\(382\) 13221.9 1.77092
\(383\) −2414.03 −0.322066 −0.161033 0.986949i \(-0.551483\pi\)
−0.161033 + 0.986949i \(0.551483\pi\)
\(384\) 3156.52 0.419481
\(385\) 0 0
\(386\) −16638.9 −2.19403
\(387\) 208.060 0.0273289
\(388\) −7326.17 −0.958583
\(389\) −4479.41 −0.583844 −0.291922 0.956442i \(-0.594295\pi\)
−0.291922 + 0.956442i \(0.594295\pi\)
\(390\) 0 0
\(391\) 1971.50 0.254995
\(392\) −821.074 −0.105792
\(393\) −6401.56 −0.821669
\(394\) 13329.0 1.70433
\(395\) 0 0
\(396\) 1442.65 0.183070
\(397\) 1780.62 0.225105 0.112553 0.993646i \(-0.464097\pi\)
0.112553 + 0.993646i \(0.464097\pi\)
\(398\) −7775.88 −0.979321
\(399\) −5088.44 −0.638448
\(400\) 0 0
\(401\) −4067.97 −0.506595 −0.253297 0.967388i \(-0.581515\pi\)
−0.253297 + 0.967388i \(0.581515\pi\)
\(402\) −10048.3 −1.24668
\(403\) 10480.3 1.29543
\(404\) −1285.28 −0.158280
\(405\) 0 0
\(406\) −13711.9 −1.67614
\(407\) −5057.75 −0.615979
\(408\) −432.749 −0.0525105
\(409\) −632.302 −0.0764434 −0.0382217 0.999269i \(-0.512169\pi\)
−0.0382217 + 0.999269i \(0.512169\pi\)
\(410\) 0 0
\(411\) −165.436 −0.0198549
\(412\) −53.5325 −0.00640135
\(413\) 13196.6 1.57231
\(414\) −4428.19 −0.525686
\(415\) 0 0
\(416\) 8894.56 1.04830
\(417\) 768.797 0.0902834
\(418\) 5500.57 0.643640
\(419\) −1107.06 −0.129077 −0.0645386 0.997915i \(-0.520558\pi\)
−0.0645386 + 0.997915i \(0.520558\pi\)
\(420\) 0 0
\(421\) −15977.3 −1.84961 −0.924804 0.380444i \(-0.875771\pi\)
−0.924804 + 0.380444i \(0.875771\pi\)
\(422\) −20909.5 −2.41198
\(423\) −2348.21 −0.269914
\(424\) −5736.79 −0.657083
\(425\) 0 0
\(426\) 8736.60 0.993638
\(427\) −9685.30 −1.09767
\(428\) −4733.82 −0.534621
\(429\) 1680.26 0.189100
\(430\) 0 0
\(431\) 10283.0 1.14922 0.574610 0.818427i \(-0.305154\pi\)
0.574610 + 0.818427i \(0.305154\pi\)
\(432\) −1188.00 −0.132309
\(433\) 7084.29 0.786257 0.393128 0.919484i \(-0.371393\pi\)
0.393128 + 0.919484i \(0.371393\pi\)
\(434\) −26685.9 −2.95153
\(435\) 0 0
\(436\) −3523.53 −0.387033
\(437\) −9379.96 −1.02678
\(438\) 6171.92 0.673301
\(439\) −5308.51 −0.577133 −0.288567 0.957460i \(-0.593179\pi\)
−0.288567 + 0.957460i \(0.593179\pi\)
\(440\) 0 0
\(441\) 870.881 0.0940374
\(442\) −2520.12 −0.271199
\(443\) −3533.26 −0.378939 −0.189470 0.981887i \(-0.560677\pi\)
−0.189470 + 0.981887i \(0.560677\pi\)
\(444\) −9465.87 −1.01178
\(445\) 0 0
\(446\) −320.204 −0.0339957
\(447\) −253.151 −0.0267866
\(448\) −15266.6 −1.60999
\(449\) 4787.18 0.503165 0.251582 0.967836i \(-0.419049\pi\)
0.251582 + 0.967836i \(0.419049\pi\)
\(450\) 0 0
\(451\) 2120.13 0.221360
\(452\) 7336.17 0.763417
\(453\) 3154.94 0.327223
\(454\) −6915.39 −0.714880
\(455\) 0 0
\(456\) 2058.93 0.211443
\(457\) −13168.8 −1.34795 −0.673973 0.738756i \(-0.735414\pi\)
−0.673973 + 0.738756i \(0.735414\pi\)
\(458\) −8486.76 −0.865852
\(459\) 459.000 0.0466760
\(460\) 0 0
\(461\) −7145.81 −0.721938 −0.360969 0.932578i \(-0.617554\pi\)
−0.360969 + 0.932578i \(0.617554\pi\)
\(462\) −4278.44 −0.430847
\(463\) −9462.71 −0.949826 −0.474913 0.880033i \(-0.657520\pi\)
−0.474913 + 0.880033i \(0.657520\pi\)
\(464\) −6781.18 −0.678466
\(465\) 0 0
\(466\) −17926.3 −1.78201
\(467\) 5306.09 0.525774 0.262887 0.964827i \(-0.415325\pi\)
0.262887 + 0.964827i \(0.415325\pi\)
\(468\) 3144.70 0.310607
\(469\) 16555.6 1.63000
\(470\) 0 0
\(471\) −4762.41 −0.465903
\(472\) −5339.73 −0.520723
\(473\) 370.565 0.0360224
\(474\) −3232.89 −0.313274
\(475\) 0 0
\(476\) 3565.00 0.343280
\(477\) 6084.79 0.584074
\(478\) 6851.73 0.655630
\(479\) 11731.4 1.11904 0.559522 0.828815i \(-0.310985\pi\)
0.559522 + 0.828815i \(0.310985\pi\)
\(480\) 0 0
\(481\) −11024.9 −1.04510
\(482\) 28687.3 2.71094
\(483\) 7295.90 0.687319
\(484\) −10740.6 −1.00869
\(485\) 0 0
\(486\) −1030.96 −0.0962250
\(487\) −11075.5 −1.03055 −0.515274 0.857026i \(-0.672310\pi\)
−0.515274 + 0.857026i \(0.672310\pi\)
\(488\) 3918.94 0.363529
\(489\) −5248.77 −0.485394
\(490\) 0 0
\(491\) 2009.14 0.184666 0.0923331 0.995728i \(-0.470568\pi\)
0.0923331 + 0.995728i \(0.470568\pi\)
\(492\) 3967.95 0.363595
\(493\) 2620.00 0.239349
\(494\) 11990.2 1.09203
\(495\) 0 0
\(496\) −13197.4 −1.19472
\(497\) −14394.4 −1.29915
\(498\) 6986.51 0.628660
\(499\) 9956.24 0.893192 0.446596 0.894736i \(-0.352636\pi\)
0.446596 + 0.894736i \(0.352636\pi\)
\(500\) 0 0
\(501\) 4872.62 0.434516
\(502\) −12220.0 −1.08647
\(503\) −11760.9 −1.04253 −0.521266 0.853394i \(-0.674540\pi\)
−0.521266 + 0.853394i \(0.674540\pi\)
\(504\) −1601.47 −0.141538
\(505\) 0 0
\(506\) −7886.83 −0.692910
\(507\) −2928.35 −0.256514
\(508\) −3404.10 −0.297308
\(509\) −948.293 −0.0825783 −0.0412891 0.999147i \(-0.513146\pi\)
−0.0412891 + 0.999147i \(0.513146\pi\)
\(510\) 0 0
\(511\) −10168.9 −0.880322
\(512\) −14187.4 −1.22461
\(513\) −2183.82 −0.187949
\(514\) −6196.13 −0.531711
\(515\) 0 0
\(516\) 693.532 0.0591687
\(517\) −4182.27 −0.355775
\(518\) 28072.8 2.38117
\(519\) 11203.5 0.947550
\(520\) 0 0
\(521\) −9796.08 −0.823751 −0.411875 0.911240i \(-0.635126\pi\)
−0.411875 + 0.911240i \(0.635126\pi\)
\(522\) −5884.80 −0.493430
\(523\) 4501.89 0.376394 0.188197 0.982131i \(-0.439736\pi\)
0.188197 + 0.982131i \(0.439736\pi\)
\(524\) −21338.5 −1.77897
\(525\) 0 0
\(526\) −32249.5 −2.67328
\(527\) 5099.00 0.421472
\(528\) −2115.89 −0.174398
\(529\) 1282.17 0.105381
\(530\) 0 0
\(531\) 5663.64 0.462865
\(532\) −16961.5 −1.38228
\(533\) 4621.49 0.375570
\(534\) −11775.2 −0.954236
\(535\) 0 0
\(536\) −6698.88 −0.539827
\(537\) −4303.94 −0.345863
\(538\) −29258.3 −2.34464
\(539\) 1551.08 0.123951
\(540\) 0 0
\(541\) −8419.68 −0.669114 −0.334557 0.942376i \(-0.608587\pi\)
−0.334557 + 0.942376i \(0.608587\pi\)
\(542\) −3602.99 −0.285538
\(543\) −657.790 −0.0519861
\(544\) 4327.49 0.341066
\(545\) 0 0
\(546\) −9326.19 −0.730997
\(547\) −4655.26 −0.363884 −0.181942 0.983309i \(-0.558238\pi\)
−0.181942 + 0.983309i \(0.558238\pi\)
\(548\) −551.455 −0.0429872
\(549\) −4156.67 −0.323137
\(550\) 0 0
\(551\) −12465.4 −0.963781
\(552\) −2952.13 −0.227629
\(553\) 5326.52 0.409596
\(554\) 17310.3 1.32752
\(555\) 0 0
\(556\) 2562.66 0.195469
\(557\) −17855.9 −1.35831 −0.679157 0.733993i \(-0.737654\pi\)
−0.679157 + 0.733993i \(0.737654\pi\)
\(558\) −11452.9 −0.868887
\(559\) 807.760 0.0611174
\(560\) 0 0
\(561\) 817.501 0.0615239
\(562\) −21077.0 −1.58199
\(563\) 21434.5 1.60454 0.802269 0.596962i \(-0.203626\pi\)
0.802269 + 0.596962i \(0.203626\pi\)
\(564\) −7827.35 −0.584381
\(565\) 0 0
\(566\) −6261.40 −0.464994
\(567\) 1698.62 0.125812
\(568\) 5824.40 0.430258
\(569\) −14412.8 −1.06189 −0.530945 0.847406i \(-0.678163\pi\)
−0.530945 + 0.847406i \(0.678163\pi\)
\(570\) 0 0
\(571\) 4492.48 0.329255 0.164627 0.986356i \(-0.447358\pi\)
0.164627 + 0.986356i \(0.447358\pi\)
\(572\) 5600.87 0.409413
\(573\) −9349.31 −0.681628
\(574\) −11767.7 −0.855703
\(575\) 0 0
\(576\) −6552.00 −0.473958
\(577\) −9544.29 −0.688621 −0.344310 0.938856i \(-0.611887\pi\)
−0.344310 + 0.938856i \(0.611887\pi\)
\(578\) −1226.12 −0.0882353
\(579\) 11765.5 0.844483
\(580\) 0 0
\(581\) −11511.0 −0.821956
\(582\) 9324.70 0.664126
\(583\) 10837.3 0.769872
\(584\) 4114.61 0.291548
\(585\) 0 0
\(586\) 2210.65 0.155838
\(587\) 15671.9 1.10195 0.550977 0.834520i \(-0.314255\pi\)
0.550977 + 0.834520i \(0.314255\pi\)
\(588\) 2902.94 0.203597
\(589\) −24259.9 −1.69713
\(590\) 0 0
\(591\) −9425.03 −0.655996
\(592\) 13883.3 0.963850
\(593\) −6737.03 −0.466537 −0.233269 0.972412i \(-0.574942\pi\)
−0.233269 + 0.972412i \(0.574942\pi\)
\(594\) −1836.19 −0.126835
\(595\) 0 0
\(596\) −843.836 −0.0579947
\(597\) 5498.38 0.376941
\(598\) −17191.8 −1.17563
\(599\) −25077.1 −1.71056 −0.855278 0.518169i \(-0.826614\pi\)
−0.855278 + 0.518169i \(0.826614\pi\)
\(600\) 0 0
\(601\) 18123.5 1.23007 0.615037 0.788499i \(-0.289141\pi\)
0.615037 + 0.788499i \(0.289141\pi\)
\(602\) −2056.80 −0.139251
\(603\) 7105.23 0.479846
\(604\) 10516.5 0.708459
\(605\) 0 0
\(606\) 1635.90 0.109660
\(607\) −18377.1 −1.22884 −0.614419 0.788980i \(-0.710610\pi\)
−0.614419 + 0.788980i \(0.710610\pi\)
\(608\) −20589.3 −1.37336
\(609\) 9695.81 0.645146
\(610\) 0 0
\(611\) −9116.55 −0.603627
\(612\) 1530.00 0.101057
\(613\) −19642.4 −1.29421 −0.647105 0.762401i \(-0.724021\pi\)
−0.647105 + 0.762401i \(0.724021\pi\)
\(614\) −7289.85 −0.479144
\(615\) 0 0
\(616\) −2852.30 −0.186562
\(617\) −8738.58 −0.570181 −0.285091 0.958501i \(-0.592024\pi\)
−0.285091 + 0.958501i \(0.592024\pi\)
\(618\) 68.1357 0.00443498
\(619\) 18996.2 1.23348 0.616739 0.787168i \(-0.288453\pi\)
0.616739 + 0.787168i \(0.288453\pi\)
\(620\) 0 0
\(621\) 3131.21 0.202336
\(622\) −20857.0 −1.34452
\(623\) 19400.8 1.24764
\(624\) −4612.23 −0.295892
\(625\) 0 0
\(626\) 31293.1 1.99796
\(627\) −3889.49 −0.247737
\(628\) −15874.7 −1.00871
\(629\) −5363.99 −0.340026
\(630\) 0 0
\(631\) 18454.2 1.16426 0.582130 0.813096i \(-0.302219\pi\)
0.582130 + 0.813096i \(0.302219\pi\)
\(632\) −2155.26 −0.135651
\(633\) 14785.2 0.928373
\(634\) 2217.66 0.138919
\(635\) 0 0
\(636\) 20282.6 1.26456
\(637\) 3381.06 0.210302
\(638\) −10481.1 −0.650393
\(639\) −6177.71 −0.382451
\(640\) 0 0
\(641\) −2208.09 −0.136060 −0.0680300 0.997683i \(-0.521671\pi\)
−0.0680300 + 0.997683i \(0.521671\pi\)
\(642\) 6025.17 0.370396
\(643\) 14048.7 0.861625 0.430813 0.902441i \(-0.358227\pi\)
0.430813 + 0.902441i \(0.358227\pi\)
\(644\) 24319.7 1.48809
\(645\) 0 0
\(646\) 5833.62 0.355295
\(647\) −7959.60 −0.483654 −0.241827 0.970319i \(-0.577747\pi\)
−0.241827 + 0.970319i \(0.577747\pi\)
\(648\) −687.308 −0.0416667
\(649\) 10087.2 0.610105
\(650\) 0 0
\(651\) 18869.8 1.13605
\(652\) −17495.9 −1.05091
\(653\) −8533.37 −0.511388 −0.255694 0.966758i \(-0.582304\pi\)
−0.255694 + 0.966758i \(0.582304\pi\)
\(654\) 4484.72 0.268145
\(655\) 0 0
\(656\) −5819.66 −0.346371
\(657\) −4364.21 −0.259154
\(658\) 23213.5 1.37531
\(659\) 8532.32 0.504358 0.252179 0.967681i \(-0.418853\pi\)
0.252179 + 0.967681i \(0.418853\pi\)
\(660\) 0 0
\(661\) 24194.0 1.42366 0.711828 0.702353i \(-0.247867\pi\)
0.711828 + 0.702353i \(0.247867\pi\)
\(662\) −21283.1 −1.24953
\(663\) 1782.00 0.104385
\(664\) 4657.67 0.272218
\(665\) 0 0
\(666\) 12048.1 0.700982
\(667\) 17873.1 1.03756
\(668\) 16242.1 0.940755
\(669\) 226.418 0.0130850
\(670\) 0 0
\(671\) −7403.23 −0.425929
\(672\) 16014.7 0.919316
\(673\) 10069.6 0.576750 0.288375 0.957518i \(-0.406885\pi\)
0.288375 + 0.957518i \(0.406885\pi\)
\(674\) −45866.3 −2.62122
\(675\) 0 0
\(676\) −9761.18 −0.555370
\(677\) −13155.9 −0.746856 −0.373428 0.927659i \(-0.621818\pi\)
−0.373428 + 0.927659i \(0.621818\pi\)
\(678\) −9337.42 −0.528911
\(679\) −15363.4 −0.868326
\(680\) 0 0
\(681\) 4889.92 0.275157
\(682\) −20398.1 −1.14529
\(683\) 21814.1 1.22210 0.611049 0.791593i \(-0.290748\pi\)
0.611049 + 0.791593i \(0.290748\pi\)
\(684\) −7279.40 −0.406922
\(685\) 0 0
\(686\) 21907.7 1.21930
\(687\) 6001.04 0.333267
\(688\) −1017.18 −0.0563658
\(689\) 23623.3 1.30620
\(690\) 0 0
\(691\) −8237.48 −0.453500 −0.226750 0.973953i \(-0.572810\pi\)
−0.226750 + 0.973953i \(0.572810\pi\)
\(692\) 37345.0 2.05151
\(693\) 3025.32 0.165833
\(694\) −17553.3 −0.960105
\(695\) 0 0
\(696\) −3923.20 −0.213662
\(697\) 2248.50 0.122192
\(698\) −31951.8 −1.73265
\(699\) 12675.8 0.685897
\(700\) 0 0
\(701\) 3684.13 0.198499 0.0992495 0.995063i \(-0.468356\pi\)
0.0992495 + 0.995063i \(0.468356\pi\)
\(702\) −4002.55 −0.215195
\(703\) 25520.7 1.36918
\(704\) −11669.4 −0.624728
\(705\) 0 0
\(706\) −20671.4 −1.10195
\(707\) −2695.31 −0.143377
\(708\) 18878.8 1.00213
\(709\) 26765.8 1.41779 0.708894 0.705315i \(-0.249194\pi\)
0.708894 + 0.705315i \(0.249194\pi\)
\(710\) 0 0
\(711\) 2286.00 0.120579
\(712\) −7850.12 −0.413196
\(713\) 34784.3 1.82705
\(714\) −4537.50 −0.237831
\(715\) 0 0
\(716\) −14346.5 −0.748816
\(717\) −4844.91 −0.252352
\(718\) 135.522 0.00704407
\(719\) 20163.3 1.04585 0.522924 0.852379i \(-0.324841\pi\)
0.522924 + 0.852379i \(0.324841\pi\)
\(720\) 0 0
\(721\) −112.261 −0.00579862
\(722\) 1345.18 0.0693384
\(723\) −20285.0 −1.04344
\(724\) −2192.63 −0.112553
\(725\) 0 0
\(726\) 13670.5 0.698844
\(727\) −23230.6 −1.18511 −0.592556 0.805529i \(-0.701881\pi\)
−0.592556 + 0.805529i \(0.701881\pi\)
\(728\) −6217.46 −0.316531
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 393.002 0.0198847
\(732\) −13855.6 −0.699612
\(733\) 28594.4 1.44087 0.720436 0.693521i \(-0.243942\pi\)
0.720436 + 0.693521i \(0.243942\pi\)
\(734\) 9598.62 0.482686
\(735\) 0 0
\(736\) 29521.3 1.47849
\(737\) 12654.8 0.632489
\(738\) −5050.37 −0.251906
\(739\) 8294.73 0.412891 0.206446 0.978458i \(-0.433810\pi\)
0.206446 + 0.978458i \(0.433810\pi\)
\(740\) 0 0
\(741\) −8478.35 −0.420324
\(742\) −60151.9 −2.97607
\(743\) 5881.61 0.290411 0.145205 0.989402i \(-0.453616\pi\)
0.145205 + 0.989402i \(0.453616\pi\)
\(744\) −7635.25 −0.376239
\(745\) 0 0
\(746\) −24559.4 −1.20534
\(747\) −4940.21 −0.241971
\(748\) 2725.00 0.133203
\(749\) −9927.08 −0.484283
\(750\) 0 0
\(751\) 1255.39 0.0609984 0.0304992 0.999535i \(-0.490290\pi\)
0.0304992 + 0.999535i \(0.490290\pi\)
\(752\) 11480.1 0.556698
\(753\) 8640.88 0.418182
\(754\) −22846.8 −1.10349
\(755\) 0 0
\(756\) 5662.05 0.272390
\(757\) 38652.8 1.85582 0.927912 0.372799i \(-0.121602\pi\)
0.927912 + 0.372799i \(0.121602\pi\)
\(758\) −46418.3 −2.22426
\(759\) 5576.83 0.266701
\(760\) 0 0
\(761\) −3286.48 −0.156550 −0.0782752 0.996932i \(-0.524941\pi\)
−0.0782752 + 0.996932i \(0.524941\pi\)
\(762\) 4332.71 0.205981
\(763\) −7389.05 −0.350592
\(764\) −31164.4 −1.47577
\(765\) 0 0
\(766\) 10241.9 0.483099
\(767\) 21988.2 1.03514
\(768\) 4080.00 0.191698
\(769\) −29939.6 −1.40396 −0.701982 0.712195i \(-0.747701\pi\)
−0.701982 + 0.712195i \(0.747701\pi\)
\(770\) 0 0
\(771\) 4381.33 0.204656
\(772\) 39218.2 1.82836
\(773\) −40700.7 −1.89379 −0.946896 0.321541i \(-0.895799\pi\)
−0.946896 + 0.321541i \(0.895799\pi\)
\(774\) −882.723 −0.0409933
\(775\) 0 0
\(776\) 6216.46 0.287575
\(777\) −19850.5 −0.916514
\(778\) 19004.5 0.875765
\(779\) −10697.9 −0.492030
\(780\) 0 0
\(781\) −11002.8 −0.504112
\(782\) −8364.36 −0.382492
\(783\) 4161.18 0.189921
\(784\) −4257.64 −0.193952
\(785\) 0 0
\(786\) 27159.5 1.23250
\(787\) 8126.31 0.368071 0.184035 0.982920i \(-0.441084\pi\)
0.184035 + 0.982920i \(0.441084\pi\)
\(788\) −31416.8 −1.42027
\(789\) 22803.9 1.02895
\(790\) 0 0
\(791\) 15384.4 0.691536
\(792\) −1224.13 −0.0549211
\(793\) −16137.6 −0.722653
\(794\) −7554.53 −0.337658
\(795\) 0 0
\(796\) 18327.9 0.816100
\(797\) −11987.8 −0.532787 −0.266393 0.963864i \(-0.585832\pi\)
−0.266393 + 0.963864i \(0.585832\pi\)
\(798\) 21588.4 0.957671
\(799\) −4435.50 −0.196391
\(800\) 0 0
\(801\) 8326.31 0.367285
\(802\) 17258.9 0.759892
\(803\) −7772.86 −0.341592
\(804\) 23684.1 1.03890
\(805\) 0 0
\(806\) −44464.1 −1.94315
\(807\) 20688.8 0.902453
\(808\) 1090.60 0.0474840
\(809\) −36146.3 −1.57087 −0.785436 0.618943i \(-0.787561\pi\)
−0.785436 + 0.618943i \(0.787561\pi\)
\(810\) 0 0
\(811\) −6244.38 −0.270370 −0.135185 0.990820i \(-0.543163\pi\)
−0.135185 + 0.990820i \(0.543163\pi\)
\(812\) 32319.4 1.39678
\(813\) 2547.70 0.109904
\(814\) 21458.2 0.923969
\(815\) 0 0
\(816\) −2244.00 −0.0962693
\(817\) −1869.82 −0.0800692
\(818\) 2682.63 0.114665
\(819\) 6594.62 0.281361
\(820\) 0 0
\(821\) 28413.7 1.20785 0.603924 0.797042i \(-0.293603\pi\)
0.603924 + 0.797042i \(0.293603\pi\)
\(822\) 701.887 0.0297824
\(823\) 18803.1 0.796399 0.398199 0.917299i \(-0.369635\pi\)
0.398199 + 0.917299i \(0.369635\pi\)
\(824\) 45.4238 0.00192040
\(825\) 0 0
\(826\) −55988.6 −2.35847
\(827\) −33860.3 −1.42375 −0.711873 0.702309i \(-0.752153\pi\)
−0.711873 + 0.702309i \(0.752153\pi\)
\(828\) 10437.4 0.438071
\(829\) −19746.0 −0.827270 −0.413635 0.910443i \(-0.635741\pi\)
−0.413635 + 0.910443i \(0.635741\pi\)
\(830\) 0 0
\(831\) −12240.3 −0.510963
\(832\) −25437.1 −1.05994
\(833\) 1645.00 0.0684223
\(834\) −3261.73 −0.135425
\(835\) 0 0
\(836\) −12965.0 −0.536367
\(837\) 8098.41 0.334435
\(838\) 4696.85 0.193616
\(839\) −31045.8 −1.27750 −0.638748 0.769416i \(-0.720547\pi\)
−0.638748 + 0.769416i \(0.720547\pi\)
\(840\) 0 0
\(841\) −636.719 −0.0261068
\(842\) 67785.9 2.77441
\(843\) 14903.7 0.608910
\(844\) 49284.1 2.00999
\(845\) 0 0
\(846\) 9962.59 0.404871
\(847\) −22523.6 −0.913718
\(848\) −29747.8 −1.20465
\(849\) 4427.48 0.178976
\(850\) 0 0
\(851\) −36592.1 −1.47398
\(852\) −20592.4 −0.828031
\(853\) −36020.9 −1.44587 −0.722937 0.690914i \(-0.757208\pi\)
−0.722937 + 0.690914i \(0.757208\pi\)
\(854\) 41091.2 1.64650
\(855\) 0 0
\(856\) 4016.78 0.160386
\(857\) 35927.0 1.43202 0.716010 0.698090i \(-0.245966\pi\)
0.716010 + 0.698090i \(0.245966\pi\)
\(858\) −7128.74 −0.283649
\(859\) −20914.3 −0.830718 −0.415359 0.909658i \(-0.636344\pi\)
−0.415359 + 0.909658i \(0.636344\pi\)
\(860\) 0 0
\(861\) 8321.01 0.329360
\(862\) −43627.0 −1.72383
\(863\) 5395.57 0.212824 0.106412 0.994322i \(-0.466064\pi\)
0.106412 + 0.994322i \(0.466064\pi\)
\(864\) 6873.08 0.270633
\(865\) 0 0
\(866\) −30056.1 −1.17939
\(867\) 867.000 0.0339618
\(868\) 62899.3 2.45961
\(869\) 4071.48 0.158936
\(870\) 0 0
\(871\) 27585.0 1.07311
\(872\) 2989.82 0.116110
\(873\) −6593.56 −0.255622
\(874\) 39795.8 1.54018
\(875\) 0 0
\(876\) −14547.4 −0.561084
\(877\) 31305.2 1.20536 0.602681 0.797983i \(-0.294099\pi\)
0.602681 + 0.797983i \(0.294099\pi\)
\(878\) 22522.1 0.865700
\(879\) −1563.17 −0.0599822
\(880\) 0 0
\(881\) 19975.4 0.763891 0.381945 0.924185i \(-0.375254\pi\)
0.381945 + 0.924185i \(0.375254\pi\)
\(882\) −3694.83 −0.141056
\(883\) −32032.5 −1.22081 −0.610407 0.792088i \(-0.708994\pi\)
−0.610407 + 0.792088i \(0.708994\pi\)
\(884\) 5939.99 0.225999
\(885\) 0 0
\(886\) 14990.3 0.568409
\(887\) −32668.4 −1.23664 −0.618319 0.785927i \(-0.712186\pi\)
−0.618319 + 0.785927i \(0.712186\pi\)
\(888\) 8032.06 0.303534
\(889\) −7138.58 −0.269314
\(890\) 0 0
\(891\) 1298.38 0.0488188
\(892\) 754.727 0.0283298
\(893\) 21103.1 0.790805
\(894\) 1074.03 0.0401799
\(895\) 0 0
\(896\) 22064.7 0.822690
\(897\) 12156.4 0.452499
\(898\) −20310.3 −0.754747
\(899\) 46226.3 1.71494
\(900\) 0 0
\(901\) 11493.5 0.424976
\(902\) −8994.96 −0.332039
\(903\) 1454.38 0.0535976
\(904\) −6224.95 −0.229025
\(905\) 0 0
\(906\) −13385.3 −0.490835
\(907\) 39521.1 1.44683 0.723417 0.690411i \(-0.242571\pi\)
0.723417 + 0.690411i \(0.242571\pi\)
\(908\) 16299.7 0.595733
\(909\) −1156.75 −0.0422080
\(910\) 0 0
\(911\) 47835.9 1.73971 0.869854 0.493310i \(-0.164213\pi\)
0.869854 + 0.493310i \(0.164213\pi\)
\(912\) 10676.5 0.387646
\(913\) −8798.75 −0.318944
\(914\) 55870.6 2.02192
\(915\) 0 0
\(916\) 20003.5 0.721543
\(917\) −44748.1 −1.61146
\(918\) −1947.37 −0.0700140
\(919\) −39689.7 −1.42464 −0.712319 0.701856i \(-0.752355\pi\)
−0.712319 + 0.701856i \(0.752355\pi\)
\(920\) 0 0
\(921\) 5154.70 0.184423
\(922\) 30317.1 1.08291
\(923\) −23984.0 −0.855302
\(924\) 10084.4 0.359039
\(925\) 0 0
\(926\) 40146.9 1.42474
\(927\) −48.1792 −0.00170703
\(928\) 39232.0 1.38777
\(929\) −4579.27 −0.161723 −0.0808617 0.996725i \(-0.525767\pi\)
−0.0808617 + 0.996725i \(0.525767\pi\)
\(930\) 0 0
\(931\) −7826.53 −0.275515
\(932\) 42252.6 1.48501
\(933\) 14748.2 0.517506
\(934\) −22511.8 −0.788661
\(935\) 0 0
\(936\) −2668.37 −0.0931820
\(937\) 38046.5 1.32649 0.663246 0.748401i \(-0.269178\pi\)
0.663246 + 0.748401i \(0.269178\pi\)
\(938\) −70239.6 −2.44499
\(939\) −22127.5 −0.769015
\(940\) 0 0
\(941\) −9081.31 −0.314604 −0.157302 0.987551i \(-0.550280\pi\)
−0.157302 + 0.987551i \(0.550280\pi\)
\(942\) 20205.2 0.698855
\(943\) 15338.8 0.529694
\(944\) −27688.9 −0.954658
\(945\) 0 0
\(946\) −1572.17 −0.0540335
\(947\) −39575.9 −1.35802 −0.679009 0.734130i \(-0.737590\pi\)
−0.679009 + 0.734130i \(0.737590\pi\)
\(948\) 7620.00 0.261061
\(949\) −16943.4 −0.579562
\(950\) 0 0
\(951\) −1568.12 −0.0534698
\(952\) −3025.00 −0.102984
\(953\) 28601.6 0.972189 0.486095 0.873906i \(-0.338421\pi\)
0.486095 + 0.873906i \(0.338421\pi\)
\(954\) −25815.6 −0.876111
\(955\) 0 0
\(956\) −16149.7 −0.546358
\(957\) 7411.26 0.250337
\(958\) −49772.2 −1.67857
\(959\) −1156.43 −0.0389396
\(960\) 0 0
\(961\) 60173.7 2.01986
\(962\) 46774.9 1.56765
\(963\) −4260.44 −0.142566
\(964\) −67616.7 −2.25912
\(965\) 0 0
\(966\) −30953.9 −1.03098
\(967\) −2591.39 −0.0861773 −0.0430887 0.999071i \(-0.513720\pi\)
−0.0430887 + 0.999071i \(0.513720\pi\)
\(968\) 9113.68 0.302608
\(969\) −4124.99 −0.136753
\(970\) 0 0
\(971\) −49692.4 −1.64233 −0.821166 0.570689i \(-0.806676\pi\)
−0.821166 + 0.570689i \(0.806676\pi\)
\(972\) 2430.00 0.0801875
\(973\) 5374.04 0.177064
\(974\) 46989.2 1.54582
\(975\) 0 0
\(976\) 20321.5 0.666470
\(977\) 44489.8 1.45686 0.728432 0.685119i \(-0.240250\pi\)
0.728432 + 0.685119i \(0.240250\pi\)
\(978\) 22268.6 0.728091
\(979\) 14829.6 0.484121
\(980\) 0 0
\(981\) −3171.18 −0.103209
\(982\) −8524.05 −0.276999
\(983\) 37606.9 1.22022 0.610109 0.792318i \(-0.291126\pi\)
0.610109 + 0.792318i \(0.291126\pi\)
\(984\) −3366.92 −0.109079
\(985\) 0 0
\(986\) −11115.7 −0.359023
\(987\) −16414.4 −0.529358
\(988\) −28261.2 −0.910028
\(989\) 2680.98 0.0861983
\(990\) 0 0
\(991\) −55446.9 −1.77732 −0.888662 0.458563i \(-0.848364\pi\)
−0.888662 + 0.458563i \(0.848364\pi\)
\(992\) 76352.5 2.44375
\(993\) 15049.4 0.480945
\(994\) 61070.5 1.94873
\(995\) 0 0
\(996\) −16467.4 −0.523884
\(997\) 39314.6 1.24885 0.624426 0.781084i \(-0.285333\pi\)
0.624426 + 0.781084i \(0.285333\pi\)
\(998\) −42240.8 −1.33979
\(999\) −8519.28 −0.269808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.4.a.m.1.1 2
5.4 even 2 51.4.a.d.1.2 2
15.14 odd 2 153.4.a.e.1.1 2
20.19 odd 2 816.4.a.o.1.2 2
35.34 odd 2 2499.4.a.l.1.2 2
60.59 even 2 2448.4.a.v.1.1 2
85.84 even 2 867.4.a.j.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.d.1.2 2 5.4 even 2
153.4.a.e.1.1 2 15.14 odd 2
816.4.a.o.1.2 2 20.19 odd 2
867.4.a.j.1.2 2 85.84 even 2
1275.4.a.m.1.1 2 1.1 even 1 trivial
2448.4.a.v.1.1 2 60.59 even 2
2499.4.a.l.1.2 2 35.34 odd 2