Properties

Label 867.4.a.j.1.2
Level $867$
Weight $4$
Character 867.1
Self dual yes
Analytic conductor $51.155$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,4,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.1546559750\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 867.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.24264 q^{2} +3.00000 q^{3} +10.0000 q^{4} -19.9706 q^{5} +12.7279 q^{6} +20.9706 q^{7} +8.48528 q^{8} +9.00000 q^{9} -84.7279 q^{10} -16.0294 q^{11} +30.0000 q^{12} -34.9411 q^{13} +88.9706 q^{14} -59.9117 q^{15} -44.0000 q^{16} +38.1838 q^{18} -80.8823 q^{19} -199.706 q^{20} +62.9117 q^{21} -68.0071 q^{22} +115.971 q^{23} +25.4558 q^{24} +273.823 q^{25} -148.243 q^{26} +27.0000 q^{27} +209.706 q^{28} -154.118 q^{29} -254.184 q^{30} -299.941 q^{31} -254.558 q^{32} -48.0883 q^{33} -418.794 q^{35} +90.0000 q^{36} -315.529 q^{37} -343.154 q^{38} -104.823 q^{39} -169.456 q^{40} -132.265 q^{41} +266.912 q^{42} -23.1177 q^{43} -160.294 q^{44} -179.735 q^{45} +492.021 q^{46} +260.912 q^{47} -132.000 q^{48} +96.7645 q^{49} +1161.73 q^{50} -349.411 q^{52} -676.087 q^{53} +114.551 q^{54} +320.117 q^{55} +177.941 q^{56} -242.647 q^{57} -653.866 q^{58} +629.294 q^{59} -599.117 q^{60} +461.852 q^{61} -1272.54 q^{62} +188.735 q^{63} -728.000 q^{64} +697.794 q^{65} -204.021 q^{66} -789.470 q^{67} +347.912 q^{69} -1776.79 q^{70} +686.412 q^{71} +76.3675 q^{72} -484.912 q^{73} -1338.68 q^{74} +821.470 q^{75} -808.823 q^{76} -336.146 q^{77} -444.728 q^{78} -254.000 q^{79} +878.705 q^{80} +81.0000 q^{81} -561.153 q^{82} +548.912 q^{83} +629.117 q^{84} -98.0803 q^{86} -462.353 q^{87} -136.014 q^{88} +925.145 q^{89} -762.551 q^{90} -732.735 q^{91} +1159.71 q^{92} -899.823 q^{93} +1106.95 q^{94} +1615.26 q^{95} -763.675 q^{96} -732.617 q^{97} +410.537 q^{98} -144.265 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 20 q^{4} - 6 q^{5} + 8 q^{7} + 18 q^{9} - 144 q^{10} - 66 q^{11} + 60 q^{12} - 2 q^{13} + 144 q^{14} - 18 q^{15} - 88 q^{16} - 26 q^{19} - 60 q^{20} + 24 q^{21} + 144 q^{22} + 198 q^{23}+ \cdots - 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.24264 1.50000 0.750000 0.661438i \(-0.230053\pi\)
0.750000 + 0.661438i \(0.230053\pi\)
\(3\) 3.00000 0.577350
\(4\) 10.0000 1.25000
\(5\) −19.9706 −1.78622 −0.893111 0.449837i \(-0.851482\pi\)
−0.893111 + 0.449837i \(0.851482\pi\)
\(6\) 12.7279 0.866025
\(7\) 20.9706 1.13230 0.566152 0.824301i \(-0.308432\pi\)
0.566152 + 0.824301i \(0.308432\pi\)
\(8\) 8.48528 0.375000
\(9\) 9.00000 0.333333
\(10\) −84.7279 −2.67933
\(11\) −16.0294 −0.439369 −0.219684 0.975571i \(-0.570503\pi\)
−0.219684 + 0.975571i \(0.570503\pi\)
\(12\) 30.0000 0.721688
\(13\) −34.9411 −0.745456 −0.372728 0.927941i \(-0.621578\pi\)
−0.372728 + 0.927941i \(0.621578\pi\)
\(14\) 88.9706 1.69846
\(15\) −59.9117 −1.03128
\(16\) −44.0000 −0.687500
\(17\) 0 0
\(18\) 38.1838 0.500000
\(19\) −80.8823 −0.976614 −0.488307 0.872672i \(-0.662385\pi\)
−0.488307 + 0.872672i \(0.662385\pi\)
\(20\) −199.706 −2.23278
\(21\) 62.9117 0.653736
\(22\) −68.0071 −0.659053
\(23\) 115.971 1.05137 0.525686 0.850679i \(-0.323809\pi\)
0.525686 + 0.850679i \(0.323809\pi\)
\(24\) 25.4558 0.216506
\(25\) 273.823 2.19059
\(26\) −148.243 −1.11818
\(27\) 27.0000 0.192450
\(28\) 209.706 1.41538
\(29\) −154.118 −0.986860 −0.493430 0.869785i \(-0.664257\pi\)
−0.493430 + 0.869785i \(0.664257\pi\)
\(30\) −254.184 −1.54691
\(31\) −299.941 −1.73777 −0.868887 0.495010i \(-0.835164\pi\)
−0.868887 + 0.495010i \(0.835164\pi\)
\(32\) −254.558 −1.40625
\(33\) −48.0883 −0.253670
\(34\) 0 0
\(35\) −418.794 −2.02255
\(36\) 90.0000 0.416667
\(37\) −315.529 −1.40196 −0.700982 0.713179i \(-0.747255\pi\)
−0.700982 + 0.713179i \(0.747255\pi\)
\(38\) −343.154 −1.46492
\(39\) −104.823 −0.430389
\(40\) −169.456 −0.669833
\(41\) −132.265 −0.503813 −0.251906 0.967752i \(-0.581057\pi\)
−0.251906 + 0.967752i \(0.581057\pi\)
\(42\) 266.912 0.980604
\(43\) −23.1177 −0.0819866 −0.0409933 0.999159i \(-0.513052\pi\)
−0.0409933 + 0.999159i \(0.513052\pi\)
\(44\) −160.294 −0.549211
\(45\) −179.735 −0.595407
\(46\) 492.021 1.57706
\(47\) 260.912 0.809742 0.404871 0.914374i \(-0.367316\pi\)
0.404871 + 0.914374i \(0.367316\pi\)
\(48\) −132.000 −0.396928
\(49\) 96.7645 0.282112
\(50\) 1161.73 3.28588
\(51\) 0 0
\(52\) −349.411 −0.931820
\(53\) −676.087 −1.75222 −0.876111 0.482110i \(-0.839871\pi\)
−0.876111 + 0.482110i \(0.839871\pi\)
\(54\) 114.551 0.288675
\(55\) 320.117 0.784810
\(56\) 177.941 0.424614
\(57\) −242.647 −0.563848
\(58\) −653.866 −1.48029
\(59\) 629.294 1.38859 0.694297 0.719689i \(-0.255715\pi\)
0.694297 + 0.719689i \(0.255715\pi\)
\(60\) −599.117 −1.28909
\(61\) 461.852 0.969411 0.484706 0.874677i \(-0.338927\pi\)
0.484706 + 0.874677i \(0.338927\pi\)
\(62\) −1272.54 −2.60666
\(63\) 188.735 0.377435
\(64\) −728.000 −1.42188
\(65\) 697.794 1.33155
\(66\) −204.021 −0.380505
\(67\) −789.470 −1.43954 −0.719770 0.694213i \(-0.755753\pi\)
−0.719770 + 0.694213i \(0.755753\pi\)
\(68\) 0 0
\(69\) 347.912 0.607009
\(70\) −1776.79 −3.03382
\(71\) 686.412 1.14735 0.573677 0.819082i \(-0.305516\pi\)
0.573677 + 0.819082i \(0.305516\pi\)
\(72\) 76.3675 0.125000
\(73\) −484.912 −0.777461 −0.388730 0.921352i \(-0.627086\pi\)
−0.388730 + 0.921352i \(0.627086\pi\)
\(74\) −1338.68 −2.10295
\(75\) 821.470 1.26474
\(76\) −808.823 −1.22077
\(77\) −336.146 −0.497499
\(78\) −444.728 −0.645584
\(79\) −254.000 −0.361737 −0.180869 0.983507i \(-0.557891\pi\)
−0.180869 + 0.983507i \(0.557891\pi\)
\(80\) 878.705 1.22803
\(81\) 81.0000 0.111111
\(82\) −561.153 −0.755719
\(83\) 548.912 0.725914 0.362957 0.931806i \(-0.381767\pi\)
0.362957 + 0.931806i \(0.381767\pi\)
\(84\) 629.117 0.817170
\(85\) 0 0
\(86\) −98.0803 −0.122980
\(87\) −462.353 −0.569764
\(88\) −136.014 −0.164763
\(89\) 925.145 1.10186 0.550928 0.834553i \(-0.314274\pi\)
0.550928 + 0.834553i \(0.314274\pi\)
\(90\) −762.551 −0.893111
\(91\) −732.735 −0.844082
\(92\) 1159.71 1.31421
\(93\) −899.823 −1.00330
\(94\) 1106.95 1.21461
\(95\) 1615.26 1.74445
\(96\) −763.675 −0.811899
\(97\) −732.617 −0.766866 −0.383433 0.923569i \(-0.625258\pi\)
−0.383433 + 0.923569i \(0.625258\pi\)
\(98\) 410.537 0.423168
\(99\) −144.265 −0.146456
\(100\) 2738.23 2.73823
\(101\) −128.528 −0.126624 −0.0633120 0.997994i \(-0.520166\pi\)
−0.0633120 + 0.997994i \(0.520166\pi\)
\(102\) 0 0
\(103\) 5.35325 0.00512108 0.00256054 0.999997i \(-0.499185\pi\)
0.00256054 + 0.999997i \(0.499185\pi\)
\(104\) −296.485 −0.279546
\(105\) −1256.38 −1.16772
\(106\) −2868.40 −2.62833
\(107\) −473.382 −0.427697 −0.213848 0.976867i \(-0.568600\pi\)
−0.213848 + 0.976867i \(0.568600\pi\)
\(108\) 270.000 0.240563
\(109\) 352.353 0.309627 0.154813 0.987944i \(-0.450522\pi\)
0.154813 + 0.987944i \(0.450522\pi\)
\(110\) 1358.14 1.17722
\(111\) −946.587 −0.809424
\(112\) −922.705 −0.778459
\(113\) 733.617 0.610734 0.305367 0.952235i \(-0.401221\pi\)
0.305367 + 0.952235i \(0.401221\pi\)
\(114\) −1029.46 −0.845772
\(115\) −2316.00 −1.87798
\(116\) −1541.18 −1.23358
\(117\) −314.470 −0.248485
\(118\) 2669.87 2.08289
\(119\) 0 0
\(120\) −508.368 −0.386728
\(121\) −1074.06 −0.806955
\(122\) 1959.47 1.45412
\(123\) −396.795 −0.290876
\(124\) −2999.41 −2.17222
\(125\) −2972.09 −2.12665
\(126\) 800.735 0.566152
\(127\) 340.410 0.237846 0.118923 0.992903i \(-0.462056\pi\)
0.118923 + 0.992903i \(0.462056\pi\)
\(128\) −1052.17 −0.726562
\(129\) −69.3532 −0.0473350
\(130\) 2960.49 1.99732
\(131\) 2133.85 1.42317 0.711586 0.702599i \(-0.247977\pi\)
0.711586 + 0.702599i \(0.247977\pi\)
\(132\) −480.883 −0.317087
\(133\) −1696.15 −1.10582
\(134\) −3349.44 −2.15931
\(135\) −539.205 −0.343758
\(136\) 0 0
\(137\) 55.1455 0.0343897 0.0171949 0.999852i \(-0.494526\pi\)
0.0171949 + 0.999852i \(0.494526\pi\)
\(138\) 1476.06 0.910514
\(139\) −256.266 −0.156375 −0.0781877 0.996939i \(-0.524913\pi\)
−0.0781877 + 0.996939i \(0.524913\pi\)
\(140\) −4187.94 −2.52818
\(141\) 782.735 0.467505
\(142\) 2912.20 1.72103
\(143\) 560.087 0.327530
\(144\) −396.000 −0.229167
\(145\) 3077.82 1.76275
\(146\) −2057.31 −1.16619
\(147\) 290.294 0.162878
\(148\) −3155.29 −1.75245
\(149\) −84.3836 −0.0463958 −0.0231979 0.999731i \(-0.507385\pi\)
−0.0231979 + 0.999731i \(0.507385\pi\)
\(150\) 3485.20 1.89710
\(151\) 1051.65 0.566767 0.283383 0.959007i \(-0.408543\pi\)
0.283383 + 0.959007i \(0.408543\pi\)
\(152\) −686.309 −0.366230
\(153\) 0 0
\(154\) −1426.15 −0.746249
\(155\) 5989.99 3.10405
\(156\) −1048.23 −0.537986
\(157\) 1587.47 0.806968 0.403484 0.914987i \(-0.367799\pi\)
0.403484 + 0.914987i \(0.367799\pi\)
\(158\) −1077.63 −0.542606
\(159\) −2028.26 −1.01165
\(160\) 5083.68 2.51187
\(161\) 2431.97 1.19047
\(162\) 343.654 0.166667
\(163\) −1749.59 −0.840727 −0.420363 0.907356i \(-0.638097\pi\)
−0.420363 + 0.907356i \(0.638097\pi\)
\(164\) −1322.65 −0.629766
\(165\) 960.351 0.453110
\(166\) 2328.84 1.08887
\(167\) 1624.21 0.752604 0.376302 0.926497i \(-0.377196\pi\)
0.376302 + 0.926497i \(0.377196\pi\)
\(168\) 533.823 0.245151
\(169\) −976.118 −0.444296
\(170\) 0 0
\(171\) −727.940 −0.325538
\(172\) −231.177 −0.102483
\(173\) 3734.50 1.64120 0.820602 0.571500i \(-0.193638\pi\)
0.820602 + 0.571500i \(0.193638\pi\)
\(174\) −1961.60 −0.854646
\(175\) 5742.23 2.48041
\(176\) 705.295 0.302066
\(177\) 1887.88 0.801705
\(178\) 3925.06 1.65278
\(179\) −1434.65 −0.599053 −0.299526 0.954088i \(-0.596829\pi\)
−0.299526 + 0.954088i \(0.596829\pi\)
\(180\) −1797.35 −0.744259
\(181\) 219.263 0.0900426 0.0450213 0.998986i \(-0.485664\pi\)
0.0450213 + 0.998986i \(0.485664\pi\)
\(182\) −3108.73 −1.26612
\(183\) 1385.56 0.559690
\(184\) 984.043 0.394264
\(185\) 6301.29 2.50422
\(186\) −3817.63 −1.50496
\(187\) 0 0
\(188\) 2609.12 1.01218
\(189\) 566.205 0.217912
\(190\) 6852.99 2.61667
\(191\) −3116.44 −1.18062 −0.590308 0.807178i \(-0.700994\pi\)
−0.590308 + 0.807178i \(0.700994\pi\)
\(192\) −2184.00 −0.820920
\(193\) 3921.82 1.46269 0.731344 0.682009i \(-0.238894\pi\)
0.731344 + 0.682009i \(0.238894\pi\)
\(194\) −3108.23 −1.15030
\(195\) 2093.38 0.768770
\(196\) 967.645 0.352640
\(197\) −3141.68 −1.13622 −0.568110 0.822953i \(-0.692325\pi\)
−0.568110 + 0.822953i \(0.692325\pi\)
\(198\) −612.064 −0.219684
\(199\) −1832.79 −0.652880 −0.326440 0.945218i \(-0.605849\pi\)
−0.326440 + 0.945218i \(0.605849\pi\)
\(200\) 2323.47 0.821470
\(201\) −2368.41 −0.831118
\(202\) −545.299 −0.189936
\(203\) −3231.94 −1.11743
\(204\) 0 0
\(205\) 2641.41 0.899921
\(206\) 22.7119 0.00768162
\(207\) 1043.74 0.350457
\(208\) 1537.41 0.512501
\(209\) 1296.50 0.429094
\(210\) −5330.38 −1.75158
\(211\) −4928.41 −1.60799 −0.803994 0.594637i \(-0.797296\pi\)
−0.803994 + 0.594637i \(0.797296\pi\)
\(212\) −6760.87 −2.19028
\(213\) 2059.24 0.662425
\(214\) −2008.39 −0.641545
\(215\) 461.674 0.146446
\(216\) 229.103 0.0721688
\(217\) −6289.93 −1.96769
\(218\) 1494.91 0.464440
\(219\) −1454.74 −0.448867
\(220\) 3201.17 0.981013
\(221\) 0 0
\(222\) −4016.03 −1.21414
\(223\) −75.4727 −0.0226638 −0.0113319 0.999936i \(-0.503607\pi\)
−0.0113319 + 0.999936i \(0.503607\pi\)
\(224\) −5338.23 −1.59230
\(225\) 2464.41 0.730196
\(226\) 3112.47 0.916101
\(227\) 1629.97 0.476587 0.238293 0.971193i \(-0.423412\pi\)
0.238293 + 0.971193i \(0.423412\pi\)
\(228\) −2426.47 −0.704810
\(229\) 2000.35 0.577235 0.288617 0.957445i \(-0.406804\pi\)
0.288617 + 0.957445i \(0.406804\pi\)
\(230\) −9825.94 −2.81697
\(231\) −1008.44 −0.287231
\(232\) −1307.73 −0.370073
\(233\) 4225.26 1.18801 0.594004 0.804462i \(-0.297546\pi\)
0.594004 + 0.804462i \(0.297546\pi\)
\(234\) −1334.18 −0.372728
\(235\) −5210.55 −1.44638
\(236\) 6292.94 1.73574
\(237\) −762.000 −0.208849
\(238\) 0 0
\(239\) −1614.97 −0.437086 −0.218543 0.975827i \(-0.570130\pi\)
−0.218543 + 0.975827i \(0.570130\pi\)
\(240\) 2636.11 0.709002
\(241\) 6761.67 1.80729 0.903646 0.428280i \(-0.140880\pi\)
0.903646 + 0.428280i \(0.140880\pi\)
\(242\) −4556.84 −1.21043
\(243\) 243.000 0.0641500
\(244\) 4618.52 1.21176
\(245\) −1932.44 −0.503915
\(246\) −1683.46 −0.436314
\(247\) 2826.12 0.728022
\(248\) −2545.08 −0.651666
\(249\) 1646.74 0.419107
\(250\) −12609.5 −3.18998
\(251\) 2880.29 0.724313 0.362156 0.932117i \(-0.382041\pi\)
0.362156 + 0.932117i \(0.382041\pi\)
\(252\) 1887.35 0.471793
\(253\) −1858.94 −0.461940
\(254\) 1444.24 0.356769
\(255\) 0 0
\(256\) 1360.00 0.332031
\(257\) −1460.44 −0.354474 −0.177237 0.984168i \(-0.556716\pi\)
−0.177237 + 0.984168i \(0.556716\pi\)
\(258\) −294.241 −0.0710025
\(259\) −6616.82 −1.58745
\(260\) 6977.94 1.66444
\(261\) −1387.06 −0.328953
\(262\) 9053.17 2.13476
\(263\) −7601.29 −1.78219 −0.891094 0.453819i \(-0.850061\pi\)
−0.891094 + 0.453819i \(0.850061\pi\)
\(264\) −408.043 −0.0951261
\(265\) 13501.8 3.12986
\(266\) −7196.14 −1.65874
\(267\) 2775.44 0.636157
\(268\) −7894.70 −1.79942
\(269\) −6896.26 −1.56309 −0.781547 0.623846i \(-0.785569\pi\)
−0.781547 + 0.623846i \(0.785569\pi\)
\(270\) −2287.65 −0.515638
\(271\) 849.234 0.190359 0.0951795 0.995460i \(-0.469658\pi\)
0.0951795 + 0.995460i \(0.469658\pi\)
\(272\) 0 0
\(273\) −2198.21 −0.487331
\(274\) 233.962 0.0515846
\(275\) −4389.23 −0.962476
\(276\) 3479.12 0.758762
\(277\) −4080.09 −0.885013 −0.442507 0.896765i \(-0.645911\pi\)
−0.442507 + 0.896765i \(0.645911\pi\)
\(278\) −1087.24 −0.234563
\(279\) −2699.47 −0.579258
\(280\) −3553.58 −0.758455
\(281\) 4967.90 1.05466 0.527331 0.849660i \(-0.323193\pi\)
0.527331 + 0.849660i \(0.323193\pi\)
\(282\) 3320.86 0.701257
\(283\) 1475.83 0.309996 0.154998 0.987915i \(-0.450463\pi\)
0.154998 + 0.987915i \(0.450463\pi\)
\(284\) 6864.12 1.43419
\(285\) 4845.79 1.00716
\(286\) 2376.25 0.491295
\(287\) −2773.67 −0.570469
\(288\) −2291.03 −0.468750
\(289\) 0 0
\(290\) 13058.1 2.64413
\(291\) −2197.85 −0.442750
\(292\) −4849.12 −0.971826
\(293\) 521.056 0.103892 0.0519461 0.998650i \(-0.483458\pi\)
0.0519461 + 0.998650i \(0.483458\pi\)
\(294\) 1231.61 0.244316
\(295\) −12567.3 −2.48034
\(296\) −2677.35 −0.525736
\(297\) −432.795 −0.0845566
\(298\) −358.009 −0.0695937
\(299\) −4052.14 −0.783751
\(300\) 8214.70 1.58092
\(301\) −484.792 −0.0928337
\(302\) 4461.76 0.850150
\(303\) −385.584 −0.0731064
\(304\) 3558.82 0.671422
\(305\) −9223.44 −1.73158
\(306\) 0 0
\(307\) −1718.23 −0.319429 −0.159715 0.987163i \(-0.551057\pi\)
−0.159715 + 0.987163i \(0.551057\pi\)
\(308\) −3361.46 −0.621874
\(309\) 16.0597 0.00295666
\(310\) 25413.4 4.65608
\(311\) −4916.05 −0.896347 −0.448173 0.893947i \(-0.647925\pi\)
−0.448173 + 0.893947i \(0.647925\pi\)
\(312\) −889.456 −0.161396
\(313\) −7375.84 −1.33197 −0.665986 0.745964i \(-0.731989\pi\)
−0.665986 + 0.745964i \(0.731989\pi\)
\(314\) 6735.07 1.21045
\(315\) −3769.15 −0.674182
\(316\) −2540.00 −0.452171
\(317\) −522.706 −0.0926124 −0.0463062 0.998927i \(-0.514745\pi\)
−0.0463062 + 0.998927i \(0.514745\pi\)
\(318\) −8605.19 −1.51747
\(319\) 2470.42 0.433596
\(320\) 14538.6 2.53978
\(321\) −1420.15 −0.246931
\(322\) 10318.0 1.78571
\(323\) 0 0
\(324\) 810.000 0.138889
\(325\) −9567.70 −1.63299
\(326\) −7422.88 −1.26109
\(327\) 1057.06 0.178763
\(328\) −1122.31 −0.188930
\(329\) 5471.46 0.916874
\(330\) 4074.42 0.679665
\(331\) 5016.46 0.833020 0.416510 0.909131i \(-0.363253\pi\)
0.416510 + 0.909131i \(0.363253\pi\)
\(332\) 5489.12 0.907393
\(333\) −2839.76 −0.467321
\(334\) 6890.92 1.12891
\(335\) 15766.2 2.57134
\(336\) −2768.11 −0.449443
\(337\) 10810.8 1.74748 0.873741 0.486392i \(-0.161687\pi\)
0.873741 + 0.486392i \(0.161687\pi\)
\(338\) −4141.32 −0.666444
\(339\) 2200.85 0.352607
\(340\) 0 0
\(341\) 4807.89 0.763524
\(342\) −3088.39 −0.488307
\(343\) −5163.70 −0.812867
\(344\) −196.161 −0.0307450
\(345\) −6947.99 −1.08425
\(346\) 15844.1 2.46181
\(347\) 4137.35 0.640070 0.320035 0.947406i \(-0.396305\pi\)
0.320035 + 0.947406i \(0.396305\pi\)
\(348\) −4623.53 −0.712205
\(349\) 7531.11 1.15510 0.577552 0.816354i \(-0.304008\pi\)
0.577552 + 0.816354i \(0.304008\pi\)
\(350\) 24362.2 3.72062
\(351\) −943.410 −0.143463
\(352\) 4080.43 0.617862
\(353\) −4872.29 −0.734634 −0.367317 0.930096i \(-0.619724\pi\)
−0.367317 + 0.930096i \(0.619724\pi\)
\(354\) 8009.60 1.20256
\(355\) −13708.0 −2.04943
\(356\) 9251.45 1.37732
\(357\) 0 0
\(358\) −6086.69 −0.898579
\(359\) −31.9429 −0.00469604 −0.00234802 0.999997i \(-0.500747\pi\)
−0.00234802 + 0.999997i \(0.500747\pi\)
\(360\) −1525.10 −0.223278
\(361\) −317.061 −0.0462256
\(362\) 930.255 0.135064
\(363\) −3222.17 −0.465896
\(364\) −7327.35 −1.05510
\(365\) 9683.96 1.38872
\(366\) 5878.42 0.839535
\(367\) −2262.42 −0.321791 −0.160895 0.986971i \(-0.551438\pi\)
−0.160895 + 0.986971i \(0.551438\pi\)
\(368\) −5102.70 −0.722818
\(369\) −1190.38 −0.167938
\(370\) 26734.1 3.75633
\(371\) −14177.9 −1.98405
\(372\) −8998.23 −1.25413
\(373\) −5788.70 −0.803559 −0.401780 0.915736i \(-0.631608\pi\)
−0.401780 + 0.915736i \(0.631608\pi\)
\(374\) 0 0
\(375\) −8916.26 −1.22782
\(376\) 2213.91 0.303653
\(377\) 5385.05 0.735661
\(378\) 2402.21 0.326868
\(379\) −10940.9 −1.48284 −0.741420 0.671041i \(-0.765847\pi\)
−0.741420 + 0.671041i \(0.765847\pi\)
\(380\) 16152.6 2.18056
\(381\) 1021.23 0.137321
\(382\) −13221.9 −1.77092
\(383\) 2414.03 0.322066 0.161033 0.986949i \(-0.448517\pi\)
0.161033 + 0.986949i \(0.448517\pi\)
\(384\) −3156.52 −0.419481
\(385\) 6713.03 0.888644
\(386\) 16638.9 2.19403
\(387\) −208.060 −0.0273289
\(388\) −7326.17 −0.958583
\(389\) −4479.41 −0.583844 −0.291922 0.956442i \(-0.594295\pi\)
−0.291922 + 0.956442i \(0.594295\pi\)
\(390\) 8881.47 1.15316
\(391\) 0 0
\(392\) 821.074 0.105792
\(393\) 6401.56 0.821669
\(394\) −13329.0 −1.70433
\(395\) 5072.52 0.646143
\(396\) −1442.65 −0.183070
\(397\) 1780.62 0.225105 0.112553 0.993646i \(-0.464097\pi\)
0.112553 + 0.993646i \(0.464097\pi\)
\(398\) −7775.88 −0.979321
\(399\) −5088.44 −0.638448
\(400\) −12048.2 −1.50603
\(401\) 4067.97 0.506595 0.253297 0.967388i \(-0.418485\pi\)
0.253297 + 0.967388i \(0.418485\pi\)
\(402\) −10048.3 −1.24668
\(403\) 10480.3 1.29543
\(404\) −1285.28 −0.158280
\(405\) −1617.62 −0.198469
\(406\) −13711.9 −1.67614
\(407\) 5057.75 0.615979
\(408\) 0 0
\(409\) −632.302 −0.0764434 −0.0382217 0.999269i \(-0.512169\pi\)
−0.0382217 + 0.999269i \(0.512169\pi\)
\(410\) 11206.5 1.34988
\(411\) 165.436 0.0198549
\(412\) 53.5325 0.00640135
\(413\) 13196.6 1.57231
\(414\) 4428.19 0.525686
\(415\) −10962.1 −1.29664
\(416\) 8894.56 1.04830
\(417\) −768.797 −0.0902834
\(418\) 5500.57 0.643640
\(419\) 1107.06 0.129077 0.0645386 0.997915i \(-0.479442\pi\)
0.0645386 + 0.997915i \(0.479442\pi\)
\(420\) −12563.8 −1.45965
\(421\) −15977.3 −1.84961 −0.924804 0.380444i \(-0.875771\pi\)
−0.924804 + 0.380444i \(0.875771\pi\)
\(422\) −20909.5 −2.41198
\(423\) 2348.21 0.269914
\(424\) −5736.79 −0.657083
\(425\) 0 0
\(426\) 8736.60 0.993638
\(427\) 9685.30 1.09767
\(428\) −4733.82 −0.534621
\(429\) 1680.26 0.189100
\(430\) 1958.72 0.219669
\(431\) −10283.0 −1.14922 −0.574610 0.818427i \(-0.694846\pi\)
−0.574610 + 0.818427i \(0.694846\pi\)
\(432\) −1188.00 −0.132309
\(433\) −7084.29 −0.786257 −0.393128 0.919484i \(-0.628607\pi\)
−0.393128 + 0.919484i \(0.628607\pi\)
\(434\) −26685.9 −2.95153
\(435\) 9233.45 1.01772
\(436\) 3523.53 0.387033
\(437\) −9379.96 −1.02678
\(438\) −6171.92 −0.673301
\(439\) 5308.51 0.577133 0.288567 0.957460i \(-0.406821\pi\)
0.288567 + 0.957460i \(0.406821\pi\)
\(440\) 2716.28 0.294304
\(441\) 870.881 0.0940374
\(442\) 0 0
\(443\) 3533.26 0.378939 0.189470 0.981887i \(-0.439323\pi\)
0.189470 + 0.981887i \(0.439323\pi\)
\(444\) −9465.87 −1.01178
\(445\) −18475.7 −1.96816
\(446\) −320.204 −0.0339957
\(447\) −253.151 −0.0267866
\(448\) −15266.6 −1.60999
\(449\) −4787.18 −0.503165 −0.251582 0.967836i \(-0.580951\pi\)
−0.251582 + 0.967836i \(0.580951\pi\)
\(450\) 10455.6 1.09529
\(451\) 2120.13 0.221360
\(452\) 7336.17 0.763417
\(453\) 3154.94 0.327223
\(454\) 6915.39 0.714880
\(455\) 14633.1 1.50772
\(456\) −2058.93 −0.211443
\(457\) 13168.8 1.34795 0.673973 0.738756i \(-0.264586\pi\)
0.673973 + 0.738756i \(0.264586\pi\)
\(458\) 8486.76 0.865852
\(459\) 0 0
\(460\) −23160.0 −2.34748
\(461\) −7145.81 −0.721938 −0.360969 0.932578i \(-0.617554\pi\)
−0.360969 + 0.932578i \(0.617554\pi\)
\(462\) −4278.44 −0.430847
\(463\) 9462.71 0.949826 0.474913 0.880033i \(-0.342480\pi\)
0.474913 + 0.880033i \(0.342480\pi\)
\(464\) 6781.18 0.678466
\(465\) 17970.0 1.79212
\(466\) 17926.3 1.78201
\(467\) −5306.09 −0.525774 −0.262887 0.964827i \(-0.584675\pi\)
−0.262887 + 0.964827i \(0.584675\pi\)
\(468\) −3144.70 −0.310607
\(469\) −16555.6 −1.63000
\(470\) −22106.5 −2.16957
\(471\) 4762.41 0.465903
\(472\) 5339.73 0.520723
\(473\) 370.565 0.0360224
\(474\) −3232.89 −0.313274
\(475\) −22147.5 −2.13936
\(476\) 0 0
\(477\) −6084.79 −0.584074
\(478\) −6851.73 −0.655630
\(479\) −11731.4 −1.11904 −0.559522 0.828815i \(-0.689015\pi\)
−0.559522 + 0.828815i \(0.689015\pi\)
\(480\) 15251.0 1.45023
\(481\) 11024.9 1.04510
\(482\) 28687.3 2.71094
\(483\) 7295.90 0.687319
\(484\) −10740.6 −1.00869
\(485\) 14630.8 1.36979
\(486\) 1030.96 0.0962250
\(487\) −11075.5 −1.03055 −0.515274 0.857026i \(-0.672310\pi\)
−0.515274 + 0.857026i \(0.672310\pi\)
\(488\) 3918.94 0.363529
\(489\) −5248.77 −0.485394
\(490\) −8198.66 −0.755872
\(491\) 2009.14 0.184666 0.0923331 0.995728i \(-0.470568\pi\)
0.0923331 + 0.995728i \(0.470568\pi\)
\(492\) −3967.95 −0.363595
\(493\) 0 0
\(494\) 11990.2 1.09203
\(495\) 2881.05 0.261603
\(496\) 13197.4 1.19472
\(497\) 14394.4 1.29915
\(498\) 6986.51 0.628660
\(499\) −9956.24 −0.893192 −0.446596 0.894736i \(-0.647364\pi\)
−0.446596 + 0.894736i \(0.647364\pi\)
\(500\) −29720.9 −2.65832
\(501\) 4872.62 0.434516
\(502\) 12220.0 1.08647
\(503\) −11760.9 −1.04253 −0.521266 0.853394i \(-0.674540\pi\)
−0.521266 + 0.853394i \(0.674540\pi\)
\(504\) 1601.47 0.141538
\(505\) 2566.78 0.226179
\(506\) −7886.83 −0.692910
\(507\) −2928.35 −0.256514
\(508\) 3404.10 0.297308
\(509\) −948.293 −0.0825783 −0.0412891 0.999147i \(-0.513146\pi\)
−0.0412891 + 0.999147i \(0.513146\pi\)
\(510\) 0 0
\(511\) −10168.9 −0.880322
\(512\) 14187.4 1.22461
\(513\) −2183.82 −0.187949
\(514\) −6196.13 −0.531711
\(515\) −106.907 −0.00914738
\(516\) −693.532 −0.0591687
\(517\) −4182.27 −0.355775
\(518\) −28072.8 −2.38117
\(519\) 11203.5 0.947550
\(520\) 5920.98 0.499331
\(521\) 9796.08 0.823751 0.411875 0.911240i \(-0.364874\pi\)
0.411875 + 0.911240i \(0.364874\pi\)
\(522\) −5884.80 −0.493430
\(523\) −4501.89 −0.376394 −0.188197 0.982131i \(-0.560264\pi\)
−0.188197 + 0.982131i \(0.560264\pi\)
\(524\) 21338.5 1.77897
\(525\) 17226.7 1.43207
\(526\) −32249.5 −2.67328
\(527\) 0 0
\(528\) 2115.89 0.174398
\(529\) 1282.17 0.105381
\(530\) 57283.5 4.69478
\(531\) 5663.64 0.462865
\(532\) −16961.5 −1.38228
\(533\) 4621.49 0.375570
\(534\) 11775.2 0.954236
\(535\) 9453.70 0.763961
\(536\) −6698.88 −0.539827
\(537\) −4303.94 −0.345863
\(538\) −29258.3 −2.34464
\(539\) −1551.08 −0.123951
\(540\) −5392.05 −0.429698
\(541\) 8419.68 0.669114 0.334557 0.942376i \(-0.391413\pi\)
0.334557 + 0.942376i \(0.391413\pi\)
\(542\) 3602.99 0.285538
\(543\) 657.790 0.0519861
\(544\) 0 0
\(545\) −7036.69 −0.553062
\(546\) −9326.19 −0.730997
\(547\) −4655.26 −0.363884 −0.181942 0.983309i \(-0.558238\pi\)
−0.181942 + 0.983309i \(0.558238\pi\)
\(548\) 551.455 0.0429872
\(549\) 4156.67 0.323137
\(550\) −18621.9 −1.44371
\(551\) 12465.4 0.963781
\(552\) 2952.13 0.227629
\(553\) −5326.52 −0.409596
\(554\) −17310.3 −1.32752
\(555\) 18903.9 1.44581
\(556\) −2562.66 −0.195469
\(557\) 17855.9 1.35831 0.679157 0.733993i \(-0.262346\pi\)
0.679157 + 0.733993i \(0.262346\pi\)
\(558\) −11452.9 −0.868887
\(559\) 807.760 0.0611174
\(560\) 18426.9 1.39050
\(561\) 0 0
\(562\) 21077.0 1.58199
\(563\) −21434.5 −1.60454 −0.802269 0.596962i \(-0.796374\pi\)
−0.802269 + 0.596962i \(0.796374\pi\)
\(564\) 7827.35 0.584381
\(565\) −14650.8 −1.09091
\(566\) 6261.40 0.464994
\(567\) 1698.62 0.125812
\(568\) 5824.40 0.430258
\(569\) −14412.8 −1.06189 −0.530945 0.847406i \(-0.678163\pi\)
−0.530945 + 0.847406i \(0.678163\pi\)
\(570\) 20559.0 1.51074
\(571\) −4492.48 −0.329255 −0.164627 0.986356i \(-0.552642\pi\)
−0.164627 + 0.986356i \(0.552642\pi\)
\(572\) 5600.87 0.409413
\(573\) −9349.31 −0.681628
\(574\) −11767.7 −0.855703
\(575\) 31755.5 2.30312
\(576\) −6552.00 −0.473958
\(577\) 9544.29 0.688621 0.344310 0.938856i \(-0.388113\pi\)
0.344310 + 0.938856i \(0.388113\pi\)
\(578\) 0 0
\(579\) 11765.5 0.844483
\(580\) 30778.2 2.20344
\(581\) 11511.0 0.821956
\(582\) −9324.70 −0.664126
\(583\) 10837.3 0.769872
\(584\) −4114.61 −0.291548
\(585\) 6280.15 0.443850
\(586\) 2210.65 0.155838
\(587\) −15671.9 −1.10195 −0.550977 0.834520i \(-0.685745\pi\)
−0.550977 + 0.834520i \(0.685745\pi\)
\(588\) 2902.94 0.203597
\(589\) 24259.9 1.69713
\(590\) −53318.7 −3.72050
\(591\) −9425.03 −0.655996
\(592\) 13883.3 0.963850
\(593\) 6737.03 0.466537 0.233269 0.972412i \(-0.425058\pi\)
0.233269 + 0.972412i \(0.425058\pi\)
\(594\) −1836.19 −0.126835
\(595\) 0 0
\(596\) −843.836 −0.0579947
\(597\) −5498.38 −0.376941
\(598\) −17191.8 −1.17563
\(599\) −25077.1 −1.71056 −0.855278 0.518169i \(-0.826614\pi\)
−0.855278 + 0.518169i \(0.826614\pi\)
\(600\) 6970.41 0.474276
\(601\) −18123.5 −1.23007 −0.615037 0.788499i \(-0.710859\pi\)
−0.615037 + 0.788499i \(0.710859\pi\)
\(602\) −2056.80 −0.139251
\(603\) −7105.23 −0.479846
\(604\) 10516.5 0.708459
\(605\) 21449.5 1.44140
\(606\) −1635.90 −0.109660
\(607\) −18377.1 −1.22884 −0.614419 0.788980i \(-0.710610\pi\)
−0.614419 + 0.788980i \(0.710610\pi\)
\(608\) 20589.3 1.37336
\(609\) −9695.81 −0.645146
\(610\) −39131.8 −2.59737
\(611\) −9116.55 −0.603627
\(612\) 0 0
\(613\) 19642.4 1.29421 0.647105 0.762401i \(-0.275979\pi\)
0.647105 + 0.762401i \(0.275979\pi\)
\(614\) −7289.85 −0.479144
\(615\) 7924.22 0.519569
\(616\) −2852.30 −0.186562
\(617\) −8738.58 −0.570181 −0.285091 0.958501i \(-0.592024\pi\)
−0.285091 + 0.958501i \(0.592024\pi\)
\(618\) 68.1357 0.00443498
\(619\) −18996.2 −1.23348 −0.616739 0.787168i \(-0.711547\pi\)
−0.616739 + 0.787168i \(0.711547\pi\)
\(620\) 59899.9 3.88006
\(621\) 3131.21 0.202336
\(622\) −20857.0 −1.34452
\(623\) 19400.8 1.24764
\(624\) 4612.23 0.295892
\(625\) 25126.3 1.60808
\(626\) −31293.1 −1.99796
\(627\) 3889.49 0.247737
\(628\) 15874.7 1.00871
\(629\) 0 0
\(630\) −15991.1 −1.01127
\(631\) 18454.2 1.16426 0.582130 0.813096i \(-0.302219\pi\)
0.582130 + 0.813096i \(0.302219\pi\)
\(632\) −2155.26 −0.135651
\(633\) −14785.2 −0.928373
\(634\) −2217.66 −0.138919
\(635\) −6798.17 −0.424846
\(636\) −20282.6 −1.26456
\(637\) −3381.06 −0.210302
\(638\) 10481.1 0.650393
\(639\) 6177.71 0.382451
\(640\) 21012.5 1.29780
\(641\) 2208.09 0.136060 0.0680300 0.997683i \(-0.478329\pi\)
0.0680300 + 0.997683i \(0.478329\pi\)
\(642\) −6025.17 −0.370396
\(643\) 14048.7 0.861625 0.430813 0.902441i \(-0.358227\pi\)
0.430813 + 0.902441i \(0.358227\pi\)
\(644\) 24319.7 1.48809
\(645\) 1385.02 0.0845508
\(646\) 0 0
\(647\) 7959.60 0.483654 0.241827 0.970319i \(-0.422253\pi\)
0.241827 + 0.970319i \(0.422253\pi\)
\(648\) 687.308 0.0416667
\(649\) −10087.2 −0.610105
\(650\) −40592.3 −2.44948
\(651\) −18869.8 −1.13605
\(652\) −17495.9 −1.05091
\(653\) −8533.37 −0.511388 −0.255694 0.966758i \(-0.582304\pi\)
−0.255694 + 0.966758i \(0.582304\pi\)
\(654\) 4484.72 0.268145
\(655\) −42614.2 −2.54210
\(656\) 5819.66 0.346371
\(657\) −4364.21 −0.259154
\(658\) 23213.5 1.37531
\(659\) 8532.32 0.504358 0.252179 0.967681i \(-0.418853\pi\)
0.252179 + 0.967681i \(0.418853\pi\)
\(660\) 9603.51 0.566388
\(661\) 24194.0 1.42366 0.711828 0.702353i \(-0.247867\pi\)
0.711828 + 0.702353i \(0.247867\pi\)
\(662\) 21283.1 1.24953
\(663\) 0 0
\(664\) 4657.67 0.272218
\(665\) 33873.0 1.97525
\(666\) −12048.1 −0.700982
\(667\) −17873.1 −1.03756
\(668\) 16242.1 0.940755
\(669\) −226.418 −0.0130850
\(670\) 66890.2 3.85700
\(671\) −7403.23 −0.425929
\(672\) −16014.7 −0.919316
\(673\) 10069.6 0.576750 0.288375 0.957518i \(-0.406885\pi\)
0.288375 + 0.957518i \(0.406885\pi\)
\(674\) 45866.3 2.62122
\(675\) 7393.23 0.421579
\(676\) −9761.18 −0.555370
\(677\) −13155.9 −0.746856 −0.373428 0.927659i \(-0.621818\pi\)
−0.373428 + 0.927659i \(0.621818\pi\)
\(678\) 9337.42 0.528911
\(679\) −15363.4 −0.868326
\(680\) 0 0
\(681\) 4889.92 0.275157
\(682\) 20398.1 1.14529
\(683\) 21814.1 1.22210 0.611049 0.791593i \(-0.290748\pi\)
0.611049 + 0.791593i \(0.290748\pi\)
\(684\) −7279.40 −0.406922
\(685\) −1101.29 −0.0614277
\(686\) −21907.7 −1.21930
\(687\) 6001.04 0.333267
\(688\) 1017.18 0.0563658
\(689\) 23623.3 1.30620
\(690\) −29477.8 −1.62638
\(691\) 8237.48 0.453500 0.226750 0.973953i \(-0.427190\pi\)
0.226750 + 0.973953i \(0.427190\pi\)
\(692\) 37345.0 2.05151
\(693\) −3025.32 −0.165833
\(694\) 17553.3 0.960105
\(695\) 5117.77 0.279321
\(696\) −3923.20 −0.213662
\(697\) 0 0
\(698\) 31951.8 1.73265
\(699\) 12675.8 0.685897
\(700\) 57422.3 3.10051
\(701\) 3684.13 0.198499 0.0992495 0.995063i \(-0.468356\pi\)
0.0992495 + 0.995063i \(0.468356\pi\)
\(702\) −4002.55 −0.215195
\(703\) 25520.7 1.36918
\(704\) 11669.4 0.624728
\(705\) −15631.7 −0.835067
\(706\) −20671.4 −1.10195
\(707\) −2695.31 −0.143377
\(708\) 18878.8 1.00213
\(709\) −26765.8 −1.41779 −0.708894 0.705315i \(-0.750806\pi\)
−0.708894 + 0.705315i \(0.750806\pi\)
\(710\) −58158.3 −3.07414
\(711\) −2286.00 −0.120579
\(712\) 7850.12 0.413196
\(713\) −34784.3 −1.82705
\(714\) 0 0
\(715\) −11185.2 −0.585041
\(716\) −14346.5 −0.748816
\(717\) −4844.91 −0.252352
\(718\) −135.522 −0.00704407
\(719\) −20163.3 −1.04585 −0.522924 0.852379i \(-0.675159\pi\)
−0.522924 + 0.852379i \(0.675159\pi\)
\(720\) 7908.34 0.409342
\(721\) 112.261 0.00579862
\(722\) −1345.18 −0.0693384
\(723\) 20285.0 1.04344
\(724\) 2192.63 0.112553
\(725\) −42201.0 −2.16180
\(726\) −13670.5 −0.698844
\(727\) 23230.6 1.18511 0.592556 0.805529i \(-0.298119\pi\)
0.592556 + 0.805529i \(0.298119\pi\)
\(728\) −6217.46 −0.316531
\(729\) 729.000 0.0370370
\(730\) 41085.6 2.08308
\(731\) 0 0
\(732\) 13855.6 0.699612
\(733\) −28594.4 −1.44087 −0.720436 0.693521i \(-0.756058\pi\)
−0.720436 + 0.693521i \(0.756058\pi\)
\(734\) −9598.62 −0.482686
\(735\) −5797.32 −0.290935
\(736\) −29521.3 −1.47849
\(737\) 12654.8 0.632489
\(738\) −5050.37 −0.251906
\(739\) 8294.73 0.412891 0.206446 0.978458i \(-0.433810\pi\)
0.206446 + 0.978458i \(0.433810\pi\)
\(740\) 63012.9 3.13027
\(741\) 8478.35 0.420324
\(742\) −60151.9 −2.97607
\(743\) 5881.61 0.290411 0.145205 0.989402i \(-0.453616\pi\)
0.145205 + 0.989402i \(0.453616\pi\)
\(744\) −7635.25 −0.376239
\(745\) 1685.19 0.0828731
\(746\) −24559.4 −1.20534
\(747\) 4940.21 0.241971
\(748\) 0 0
\(749\) −9927.08 −0.484283
\(750\) −37828.5 −1.84173
\(751\) −1255.39 −0.0609984 −0.0304992 0.999535i \(-0.509710\pi\)
−0.0304992 + 0.999535i \(0.509710\pi\)
\(752\) −11480.1 −0.556698
\(753\) 8640.88 0.418182
\(754\) 22846.8 1.10349
\(755\) −21002.0 −1.01237
\(756\) 5662.05 0.272390
\(757\) −38652.8 −1.85582 −0.927912 0.372799i \(-0.878398\pi\)
−0.927912 + 0.372799i \(0.878398\pi\)
\(758\) −46418.3 −2.22426
\(759\) −5576.83 −0.266701
\(760\) 13706.0 0.654168
\(761\) −3286.48 −0.156550 −0.0782752 0.996932i \(-0.524941\pi\)
−0.0782752 + 0.996932i \(0.524941\pi\)
\(762\) 4332.71 0.205981
\(763\) 7389.05 0.350592
\(764\) −31164.4 −1.47577
\(765\) 0 0
\(766\) 10241.9 0.483099
\(767\) −21988.2 −1.03514
\(768\) 4080.00 0.191698
\(769\) −29939.6 −1.40396 −0.701982 0.712195i \(-0.747701\pi\)
−0.701982 + 0.712195i \(0.747701\pi\)
\(770\) 28481.0 1.33297
\(771\) −4381.33 −0.204656
\(772\) 39218.2 1.82836
\(773\) 40700.7 1.89379 0.946896 0.321541i \(-0.104201\pi\)
0.946896 + 0.321541i \(0.104201\pi\)
\(774\) −882.723 −0.0409933
\(775\) −82130.9 −3.80675
\(776\) −6216.46 −0.287575
\(777\) −19850.5 −0.916514
\(778\) −19004.5 −0.875765
\(779\) 10697.9 0.492030
\(780\) 20933.8 0.960963
\(781\) −11002.8 −0.504112
\(782\) 0 0
\(783\) −4161.18 −0.189921
\(784\) −4257.64 −0.193952
\(785\) −31702.7 −1.44142
\(786\) 27159.5 1.23250
\(787\) 8126.31 0.368071 0.184035 0.982920i \(-0.441084\pi\)
0.184035 + 0.982920i \(0.441084\pi\)
\(788\) −31416.8 −1.42027
\(789\) −22803.9 −1.02895
\(790\) 21520.9 0.969214
\(791\) 15384.4 0.691536
\(792\) −1224.13 −0.0549211
\(793\) −16137.6 −0.722653
\(794\) 7554.53 0.337658
\(795\) 40505.5 1.80702
\(796\) −18327.9 −0.816100
\(797\) 11987.8 0.532787 0.266393 0.963864i \(-0.414168\pi\)
0.266393 + 0.963864i \(0.414168\pi\)
\(798\) −21588.4 −0.957671
\(799\) 0 0
\(800\) −69704.1 −3.08051
\(801\) 8326.31 0.367285
\(802\) 17258.9 0.759892
\(803\) 7772.86 0.341592
\(804\) −23684.1 −1.03890
\(805\) −48567.8 −2.12645
\(806\) 44464.1 1.94315
\(807\) −20688.8 −0.902453
\(808\) −1090.60 −0.0474840
\(809\) 36146.3 1.57087 0.785436 0.618943i \(-0.212439\pi\)
0.785436 + 0.618943i \(0.212439\pi\)
\(810\) −6862.96 −0.297704
\(811\) 6244.38 0.270370 0.135185 0.990820i \(-0.456837\pi\)
0.135185 + 0.990820i \(0.456837\pi\)
\(812\) −32319.4 −1.39678
\(813\) 2547.70 0.109904
\(814\) 21458.2 0.923969
\(815\) 34940.3 1.50172
\(816\) 0 0
\(817\) 1869.82 0.0800692
\(818\) −2682.63 −0.114665
\(819\) −6594.62 −0.281361
\(820\) 26414.1 1.12490
\(821\) −28413.7 −1.20785 −0.603924 0.797042i \(-0.706397\pi\)
−0.603924 + 0.797042i \(0.706397\pi\)
\(822\) 701.887 0.0297824
\(823\) 18803.1 0.796399 0.398199 0.917299i \(-0.369635\pi\)
0.398199 + 0.917299i \(0.369635\pi\)
\(824\) 45.4238 0.00192040
\(825\) −13167.7 −0.555686
\(826\) 55988.6 2.35847
\(827\) −33860.3 −1.42375 −0.711873 0.702309i \(-0.752153\pi\)
−0.711873 + 0.702309i \(0.752153\pi\)
\(828\) 10437.4 0.438071
\(829\) −19746.0 −0.827270 −0.413635 0.910443i \(-0.635741\pi\)
−0.413635 + 0.910443i \(0.635741\pi\)
\(830\) −46508.1 −1.94497
\(831\) −12240.3 −0.510963
\(832\) 25437.1 1.05994
\(833\) 0 0
\(834\) −3261.73 −0.135425
\(835\) −32436.3 −1.34432
\(836\) 12965.0 0.536367
\(837\) −8098.41 −0.334435
\(838\) 4696.85 0.193616
\(839\) 31045.8 1.27750 0.638748 0.769416i \(-0.279453\pi\)
0.638748 + 0.769416i \(0.279453\pi\)
\(840\) −10660.8 −0.437894
\(841\) −636.719 −0.0261068
\(842\) −67785.9 −2.77441
\(843\) 14903.7 0.608910
\(844\) −49284.1 −2.00999
\(845\) 19493.6 0.793611
\(846\) 9962.59 0.404871
\(847\) −22523.6 −0.913718
\(848\) 29747.8 1.20465
\(849\) 4427.48 0.178976
\(850\) 0 0
\(851\) −36592.1 −1.47398
\(852\) 20592.4 0.828031
\(853\) −36020.9 −1.44587 −0.722937 0.690914i \(-0.757208\pi\)
−0.722937 + 0.690914i \(0.757208\pi\)
\(854\) 41091.2 1.64650
\(855\) 14537.4 0.581483
\(856\) −4016.78 −0.160386
\(857\) 35927.0 1.43202 0.716010 0.698090i \(-0.245966\pi\)
0.716010 + 0.698090i \(0.245966\pi\)
\(858\) 7128.74 0.283649
\(859\) −20914.3 −0.830718 −0.415359 0.909658i \(-0.636344\pi\)
−0.415359 + 0.909658i \(0.636344\pi\)
\(860\) 4616.74 0.183058
\(861\) −8321.01 −0.329360
\(862\) −43627.0 −1.72383
\(863\) −5395.57 −0.212824 −0.106412 0.994322i \(-0.533936\pi\)
−0.106412 + 0.994322i \(0.533936\pi\)
\(864\) −6873.08 −0.270633
\(865\) −74580.0 −2.93156
\(866\) −30056.1 −1.17939
\(867\) 0 0
\(868\) −62899.3 −2.45961
\(869\) 4071.48 0.158936
\(870\) 39174.2 1.52659
\(871\) 27585.0 1.07311
\(872\) 2989.82 0.116110
\(873\) −6593.56 −0.255622
\(874\) −39795.8 −1.54018
\(875\) −62326.3 −2.40802
\(876\) −14547.4 −0.561084
\(877\) 31305.2 1.20536 0.602681 0.797983i \(-0.294099\pi\)
0.602681 + 0.797983i \(0.294099\pi\)
\(878\) 22522.1 0.865700
\(879\) 1563.17 0.0599822
\(880\) −14085.1 −0.539557
\(881\) −19975.4 −0.763891 −0.381945 0.924185i \(-0.624746\pi\)
−0.381945 + 0.924185i \(0.624746\pi\)
\(882\) 3694.83 0.141056
\(883\) 32032.5 1.22081 0.610407 0.792088i \(-0.291006\pi\)
0.610407 + 0.792088i \(0.291006\pi\)
\(884\) 0 0
\(885\) −37702.0 −1.43202
\(886\) 14990.3 0.568409
\(887\) −32668.4 −1.23664 −0.618319 0.785927i \(-0.712186\pi\)
−0.618319 + 0.785927i \(0.712186\pi\)
\(888\) −8032.06 −0.303534
\(889\) 7138.58 0.269314
\(890\) −78385.7 −2.95224
\(891\) −1298.38 −0.0488188
\(892\) −754.727 −0.0283298
\(893\) −21103.1 −0.790805
\(894\) −1074.03 −0.0401799
\(895\) 28650.7 1.07004
\(896\) −22064.7 −0.822690
\(897\) −12156.4 −0.452499
\(898\) −20310.3 −0.754747
\(899\) 46226.3 1.71494
\(900\) 24644.1 0.912745
\(901\) 0 0
\(902\) 8994.96 0.332039
\(903\) −1454.38 −0.0535976
\(904\) 6224.95 0.229025
\(905\) −4378.81 −0.160836
\(906\) 13385.3 0.490835
\(907\) 39521.1 1.44683 0.723417 0.690411i \(-0.242571\pi\)
0.723417 + 0.690411i \(0.242571\pi\)
\(908\) 16299.7 0.595733
\(909\) −1156.75 −0.0422080
\(910\) 62083.1 2.26158
\(911\) −47835.9 −1.73971 −0.869854 0.493310i \(-0.835787\pi\)
−0.869854 + 0.493310i \(0.835787\pi\)
\(912\) 10676.5 0.387646
\(913\) −8798.75 −0.318944
\(914\) 55870.6 2.02192
\(915\) −27670.3 −0.999730
\(916\) 20003.5 0.721543
\(917\) 44748.1 1.61146
\(918\) 0 0
\(919\) −39689.7 −1.42464 −0.712319 0.701856i \(-0.752355\pi\)
−0.712319 + 0.701856i \(0.752355\pi\)
\(920\) −19651.9 −0.704243
\(921\) −5154.70 −0.184423
\(922\) −30317.1 −1.08291
\(923\) −23984.0 −0.855302
\(924\) −10084.4 −0.359039
\(925\) −86399.2 −3.07112
\(926\) 40146.9 1.42474
\(927\) 48.1792 0.00170703
\(928\) 39232.0 1.38777
\(929\) 4579.27 0.161723 0.0808617 0.996725i \(-0.474233\pi\)
0.0808617 + 0.996725i \(0.474233\pi\)
\(930\) 76240.2 2.68819
\(931\) −7826.53 −0.275515
\(932\) 42252.6 1.48501
\(933\) −14748.2 −0.517506
\(934\) −22511.8 −0.788661
\(935\) 0 0
\(936\) −2668.37 −0.0931820
\(937\) −38046.5 −1.32649 −0.663246 0.748401i \(-0.730822\pi\)
−0.663246 + 0.748401i \(0.730822\pi\)
\(938\) −70239.6 −2.44499
\(939\) −22127.5 −0.769015
\(940\) −52105.5 −1.80797
\(941\) 9081.31 0.314604 0.157302 0.987551i \(-0.449720\pi\)
0.157302 + 0.987551i \(0.449720\pi\)
\(942\) 20205.2 0.698855
\(943\) −15338.8 −0.529694
\(944\) −27688.9 −0.954658
\(945\) −11307.4 −0.389239
\(946\) 1572.17 0.0540335
\(947\) −39575.9 −1.35802 −0.679009 0.734130i \(-0.737590\pi\)
−0.679009 + 0.734130i \(0.737590\pi\)
\(948\) −7620.00 −0.261061
\(949\) 16943.4 0.579562
\(950\) −93963.7 −3.20904
\(951\) −1568.12 −0.0534698
\(952\) 0 0
\(953\) −28601.6 −0.972189 −0.486095 0.873906i \(-0.661579\pi\)
−0.486095 + 0.873906i \(0.661579\pi\)
\(954\) −25815.6 −0.876111
\(955\) 62237.0 2.10884
\(956\) −16149.7 −0.546358
\(957\) 7411.26 0.250337
\(958\) −49772.2 −1.67857
\(959\) 1156.43 0.0389396
\(960\) 43615.7 1.46634
\(961\) 60173.7 2.01986
\(962\) 46774.9 1.56765
\(963\) −4260.44 −0.142566
\(964\) 67616.7 2.25912
\(965\) −78320.9 −2.61268
\(966\) 30953.9 1.03098
\(967\) 2591.39 0.0861773 0.0430887 0.999071i \(-0.486280\pi\)
0.0430887 + 0.999071i \(0.486280\pi\)
\(968\) −9113.68 −0.302608
\(969\) 0 0
\(970\) 62073.1 2.05469
\(971\) −49692.4 −1.64233 −0.821166 0.570689i \(-0.806676\pi\)
−0.821166 + 0.570689i \(0.806676\pi\)
\(972\) 2430.00 0.0801875
\(973\) −5374.04 −0.177064
\(974\) −46989.2 −1.54582
\(975\) −28703.1 −0.942805
\(976\) −20321.5 −0.666470
\(977\) −44489.8 −1.45686 −0.728432 0.685119i \(-0.759750\pi\)
−0.728432 + 0.685119i \(0.759750\pi\)
\(978\) −22268.6 −0.728091
\(979\) −14829.6 −0.484121
\(980\) −19324.4 −0.629894
\(981\) 3171.18 0.103209
\(982\) 8524.05 0.276999
\(983\) 37606.9 1.22022 0.610109 0.792318i \(-0.291126\pi\)
0.610109 + 0.792318i \(0.291126\pi\)
\(984\) −3366.92 −0.109079
\(985\) 62741.0 2.02954
\(986\) 0 0
\(987\) 16414.4 0.529358
\(988\) 28261.2 0.910028
\(989\) −2680.98 −0.0861983
\(990\) 12223.3 0.392405
\(991\) 55446.9 1.77732 0.888662 0.458563i \(-0.151636\pi\)
0.888662 + 0.458563i \(0.151636\pi\)
\(992\) 76352.5 2.44375
\(993\) 15049.4 0.480945
\(994\) 61070.5 1.94873
\(995\) 36601.9 1.16619
\(996\) 16467.4 0.523884
\(997\) 39314.6 1.24885 0.624426 0.781084i \(-0.285333\pi\)
0.624426 + 0.781084i \(0.285333\pi\)
\(998\) −42240.8 −1.33979
\(999\) −8519.28 −0.269808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.4.a.j.1.2 2
17.16 even 2 51.4.a.d.1.2 2
51.50 odd 2 153.4.a.e.1.1 2
68.67 odd 2 816.4.a.o.1.2 2
85.84 even 2 1275.4.a.m.1.1 2
119.118 odd 2 2499.4.a.l.1.2 2
204.203 even 2 2448.4.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.d.1.2 2 17.16 even 2
153.4.a.e.1.1 2 51.50 odd 2
816.4.a.o.1.2 2 68.67 odd 2
867.4.a.j.1.2 2 1.1 even 1 trivial
1275.4.a.m.1.1 2 85.84 even 2
2448.4.a.v.1.1 2 204.203 even 2
2499.4.a.l.1.2 2 119.118 odd 2