L(s) = 1 | − 82.2i·3-s + 232. i·5-s − 1.60e3·7-s − 4.57e3·9-s − 3.37e3i·11-s + 1.09e4i·13-s + 1.91e4·15-s + 2.31e4·17-s − 2.47e4i·19-s + 1.32e5i·21-s − 4.38e4·23-s + 2.40e4·25-s + 1.96e5i·27-s + 7.97e4i·29-s + 1.08e5·31-s + ⋯ |
L(s) = 1 | − 1.75i·3-s + 0.831i·5-s − 1.77·7-s − 2.09·9-s − 0.763i·11-s + 1.37i·13-s + 1.46·15-s + 1.14·17-s − 0.827i·19-s + 3.11i·21-s − 0.751·23-s + 0.307·25-s + 1.91i·27-s + 0.607i·29-s + 0.654·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.049025463\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.049025463\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + 82.2iT - 2.18e3T^{2} \) |
| 5 | \( 1 - 232. iT - 7.81e4T^{2} \) |
| 7 | \( 1 + 1.60e3T + 8.23e5T^{2} \) |
| 11 | \( 1 + 3.37e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 - 1.09e4iT - 6.27e7T^{2} \) |
| 17 | \( 1 - 2.31e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 2.47e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 4.38e4T + 3.40e9T^{2} \) |
| 29 | \( 1 - 7.97e4iT - 1.72e10T^{2} \) |
| 31 | \( 1 - 1.08e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + 1.73e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 4.34e4T + 1.94e11T^{2} \) |
| 43 | \( 1 - 6.09e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 + 3.18e4T + 5.06e11T^{2} \) |
| 53 | \( 1 + 1.98e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 1.92e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 1.63e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 - 1.97e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 3.01e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 2.39e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + 2.37e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 2.95e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 7.18e6T + 4.42e13T^{2} \) |
| 97 | \( 1 - 1.49e7T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.16011015430612815887390014908, −11.26372255971652606153479209729, −9.852284619023557890555330231408, −8.658979442724825750217659810549, −7.26643069892315095393603121875, −6.64448266740675839889892121655, −5.96905331021797583736301986532, −3.37463821899618841132037612720, −2.46470447679173503291400570975, −0.863353193492562278944912926126,
0.40039045385511207751409877890, 3.02785745509486201113163611470, 3.88787100680286940941639866418, 5.14559617063660812147234781342, 6.06728520208443802084429180561, 8.005102284992406800525789284626, 9.236692046357756271924028647319, 9.989782798576779286203672621631, 10.35959133229660330484651330120, 12.14106588740784485504873790842