L(s) = 1 | − 82.2i·3-s + 232. i·5-s − 1.60e3·7-s − 4.57e3·9-s − 3.37e3i·11-s + 1.09e4i·13-s + 1.91e4·15-s + 2.31e4·17-s − 2.47e4i·19-s + 1.32e5i·21-s − 4.38e4·23-s + 2.40e4·25-s + 1.96e5i·27-s + 7.97e4i·29-s + 1.08e5·31-s + ⋯ |
L(s) = 1 | − 1.75i·3-s + 0.831i·5-s − 1.77·7-s − 2.09·9-s − 0.763i·11-s + 1.37i·13-s + 1.46·15-s + 1.14·17-s − 0.827i·19-s + 3.11i·21-s − 0.751·23-s + 0.307·25-s + 1.91i·27-s + 0.607i·29-s + 0.654·31-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(128s/2ΓC(s+7/2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
1
|
Analytic conductor: |
39.9852 |
Root analytic conductor: |
6.32339 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :7/2), 1)
|
Particular Values
L(4) |
≈ |
1.049025463 |
L(21) |
≈ |
1.049025463 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+82.2iT−2.18e3T2 |
| 5 | 1−232.iT−7.81e4T2 |
| 7 | 1+1.60e3T+8.23e5T2 |
| 11 | 1+3.37e3iT−1.94e7T2 |
| 13 | 1−1.09e4iT−6.27e7T2 |
| 17 | 1−2.31e4T+4.10e8T2 |
| 19 | 1+2.47e4iT−8.93e8T2 |
| 23 | 1+4.38e4T+3.40e9T2 |
| 29 | 1−7.97e4iT−1.72e10T2 |
| 31 | 1−1.08e5T+2.75e10T2 |
| 37 | 1+1.73e5iT−9.49e10T2 |
| 41 | 1−4.34e4T+1.94e11T2 |
| 43 | 1−6.09e5iT−2.71e11T2 |
| 47 | 1+3.18e4T+5.06e11T2 |
| 53 | 1+1.98e6iT−1.17e12T2 |
| 59 | 1−1.92e6iT−2.48e12T2 |
| 61 | 1−1.63e6iT−3.14e12T2 |
| 67 | 1−1.97e6iT−6.06e12T2 |
| 71 | 1−3.01e6T+9.09e12T2 |
| 73 | 1−2.39e6T+1.10e13T2 |
| 79 | 1+2.37e6T+1.92e13T2 |
| 83 | 1−2.95e6iT−2.71e13T2 |
| 89 | 1+7.18e6T+4.42e13T2 |
| 97 | 1−1.49e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.16011015430612815887390014908, −11.26372255971652606153479209729, −9.852284619023557890555330231408, −8.658979442724825750217659810549, −7.26643069892315095393603121875, −6.64448266740675839889892121655, −5.96905331021797583736301986532, −3.37463821899618841132037612720, −2.46470447679173503291400570975, −0.863353193492562278944912926126,
0.40039045385511207751409877890, 3.02785745509486201113163611470, 3.88787100680286940941639866418, 5.14559617063660812147234781342, 6.06728520208443802084429180561, 8.005102284992406800525789284626, 9.236692046357756271924028647319, 9.989782798576779286203672621631, 10.35959133229660330484651330120, 12.14106588740784485504873790842