Properties

Label 128.8.b.c
Level $128$
Weight $8$
Character orbit 128.b
Analytic conductor $39.985$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [128,8,Mod(65,128)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(128, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("128.65");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 128.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.9852832620\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 13^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + \beta_{3} q^{5} + 71 \beta_1 q^{7} - 4573 q^{9} + 41 \beta_{2} q^{11} + 47 \beta_{3} q^{13} - 845 \beta_1 q^{15} + 23110 q^{17} + 301 \beta_{2} q^{19} + 568 \beta_{3} q^{21} + 1937 \beta_1 q^{23}+ \cdots - 187493 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18292 q^{9} + 92440 q^{17} + 96180 q^{25} - 1108640 q^{33} + 173992 q^{41} + 7029796 q^{49} - 8139040 q^{57} - 10167040 q^{65} + 9563320 q^{73} + 24512836 q^{81} - 28731144 q^{89} + 59660120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 16\nu^{3} + 16\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -26\nu^{3} - 182\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 104\nu^{2} + 208 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -8\beta_{2} - 13\beta_1 ) / 416 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 208 ) / 104 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 8\beta_{2} + 91\beta_1 ) / 416 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/128\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
−0.707107 + 1.58114i
0.707107 + 1.58114i
0.707107 1.58114i
−0.707107 1.58114i
0 82.2192i 0 232.551i 0 1606.55 0 −4573.00 0
65.2 0 82.2192i 0 232.551i 0 −1606.55 0 −4573.00 0
65.3 0 82.2192i 0 232.551i 0 −1606.55 0 −4573.00 0
65.4 0 82.2192i 0 232.551i 0 1606.55 0 −4573.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 128.8.b.c 4
4.b odd 2 1 inner 128.8.b.c 4
8.b even 2 1 inner 128.8.b.c 4
8.d odd 2 1 inner 128.8.b.c 4
16.e even 4 2 256.8.a.n 4
16.f odd 4 2 256.8.a.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.8.b.c 4 1.a even 1 1 trivial
128.8.b.c 4 4.b odd 2 1 inner
128.8.b.c 4 8.b even 2 1 inner
128.8.b.c 4 8.d odd 2 1 inner
256.8.a.n 4 16.e even 4 2
256.8.a.n 4 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 6760 \) acting on \(S_{8}^{\mathrm{new}}(128, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 6760)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 54080)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 2580992)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 11363560)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 119462720)^{2} \) Copy content Toggle raw display
$17$ \( (T - 23110)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 612462760)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 1921008128)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 6362457920)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 11796480000)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 30177126720)^{2} \) Copy content Toggle raw display
$41$ \( (T - 43498)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 372080952360)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 1012140032)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 3954308022080)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 3720194843560)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 2682576153920)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 3905125081000)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 9068348019200)^{2} \) Copy content Toggle raw display
$73$ \( (T - 2390830)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 5635127347200)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 8706046958440)^{2} \) Copy content Toggle raw display
$89$ \( (T + 7182786)^{4} \) Copy content Toggle raw display
$97$ \( (T - 14915030)^{4} \) Copy content Toggle raw display
show more
show less