L(s) = 1 | + (1.5 − 2.59i)5-s + (−0.5 − 0.866i)7-s + (1.5 + 2.59i)11-s + (2 − 3.46i)13-s − 2·19-s + (3 − 5.19i)23-s + (−2 − 3.46i)25-s + (3 + 5.19i)29-s + (2.5 − 4.33i)31-s − 3·35-s + 2·37-s + (−3 + 5.19i)41-s + (−5 − 8.66i)43-s + (−3 − 5.19i)47-s + (3 − 5.19i)49-s + ⋯ |
L(s) = 1 | + (0.670 − 1.16i)5-s + (−0.188 − 0.327i)7-s + (0.452 + 0.783i)11-s + (0.554 − 0.960i)13-s − 0.458·19-s + (0.625 − 1.08i)23-s + (−0.400 − 0.692i)25-s + (0.557 + 0.964i)29-s + (0.449 − 0.777i)31-s − 0.507·35-s + 0.328·37-s + (−0.468 + 0.811i)41-s + (−0.762 − 1.32i)43-s + (−0.437 − 0.757i)47-s + (0.428 − 0.742i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.822744864\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.822744864\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.5 + 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 + 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + 2T + 19T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 - 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.5 + 4.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (3 - 5.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5 + 8.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (6 - 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7 + 12.1i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 + (-4 - 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.5 - 2.59i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 18T + 89T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.435276958998546136666193570814, −8.702492818396631087295748262906, −8.063439338348438485884420609619, −6.89098322128392487308365037656, −6.16009480359902246842373624528, −5.11651406377277662159806782209, −4.53568080039930419362873439029, −3.32954375323983113209664340505, −1.94029362432280859156290811229, −0.808117356047826066913450692885,
1.54328551351828958111255489604, 2.75555679847085373060118928734, 3.52973558185152318059097053045, 4.74319571739044989544841252986, 6.14468672509763761737082098870, 6.25727561079850022886066921031, 7.20919233048888620624394378167, 8.301573397976511241873904350283, 9.148643611844237141857628531640, 9.777757741237360002339327334269