L(s) = 1 | + (1.5 − 2.59i)5-s + (−0.5 − 0.866i)7-s + (1.5 + 2.59i)11-s + (2 − 3.46i)13-s − 2·19-s + (3 − 5.19i)23-s + (−2 − 3.46i)25-s + (3 + 5.19i)29-s + (2.5 − 4.33i)31-s − 3·35-s + 2·37-s + (−3 + 5.19i)41-s + (−5 − 8.66i)43-s + (−3 − 5.19i)47-s + (3 − 5.19i)49-s + ⋯ |
L(s) = 1 | + (0.670 − 1.16i)5-s + (−0.188 − 0.327i)7-s + (0.452 + 0.783i)11-s + (0.554 − 0.960i)13-s − 0.458·19-s + (0.625 − 1.08i)23-s + (−0.400 − 0.692i)25-s + (0.557 + 0.964i)29-s + (0.449 − 0.777i)31-s − 0.507·35-s + 0.328·37-s + (−0.468 + 0.811i)41-s + (−0.762 − 1.32i)43-s + (−0.437 − 0.757i)47-s + (0.428 − 0.742i)49-s + ⋯ |
Λ(s)=(=(1296s/2ΓC(s)L(s)(0.173+0.984i)Λ(2−s)
Λ(s)=(=(1296s/2ΓC(s+1/2)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
1296
= 24⋅34
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
10.3486 |
Root analytic conductor: |
3.21692 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1296(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1296, ( :1/2), 0.173+0.984i)
|
Particular Values
L(1) |
≈ |
1.822744864 |
L(21) |
≈ |
1.822744864 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−1.5+2.59i)T+(−2.5−4.33i)T2 |
| 7 | 1+(0.5+0.866i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1.5−2.59i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2+3.46i)T+(−6.5−11.2i)T2 |
| 17 | 1+17T2 |
| 19 | 1+2T+19T2 |
| 23 | 1+(−3+5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3−5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−2.5+4.33i)T+(−15.5−26.8i)T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+(3−5.19i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5+8.66i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3+5.19i)T+(−23.5+40.7i)T2 |
| 53 | 1+9T+53T2 |
| 59 | 1+(6−10.3i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4+6.92i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7+12.1i)T+(−33.5−58.0i)T2 |
| 71 | 1+71T2 |
| 73 | 1+7T+73T2 |
| 79 | 1+(−4−6.92i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−1.5−2.59i)T+(−41.5+71.8i)T2 |
| 89 | 1−18T+89T2 |
| 97 | 1+(−0.5−0.866i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.435276958998546136666193570814, −8.702492818396631087295748262906, −8.063439338348438485884420609619, −6.89098322128392487308365037656, −6.16009480359902246842373624528, −5.11651406377277662159806782209, −4.53568080039930419362873439029, −3.32954375323983113209664340505, −1.94029362432280859156290811229, −0.808117356047826066913450692885,
1.54328551351828958111255489604, 2.75555679847085373060118928734, 3.52973558185152318059097053045, 4.74319571739044989544841252986, 6.14468672509763761737082098870, 6.25727561079850022886066921031, 7.20919233048888620624394378167, 8.301573397976511241873904350283, 9.148643611844237141857628531640, 9.777757741237360002339327334269