Properties

Label 1296.2.i.o.433.1
Level $1296$
Weight $2$
Character 1296.433
Analytic conductor $10.349$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1296,2,Mod(433,1296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1296.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1296.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3486121020\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 433.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1296.433
Dual form 1296.2.i.o.865.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 2.59808i) q^{5} +(-0.500000 - 0.866025i) q^{7} +(1.50000 + 2.59808i) q^{11} +(2.00000 - 3.46410i) q^{13} -2.00000 q^{19} +(3.00000 - 5.19615i) q^{23} +(-2.00000 - 3.46410i) q^{25} +(3.00000 + 5.19615i) q^{29} +(2.50000 - 4.33013i) q^{31} -3.00000 q^{35} +2.00000 q^{37} +(-3.00000 + 5.19615i) q^{41} +(-5.00000 - 8.66025i) q^{43} +(-3.00000 - 5.19615i) q^{47} +(3.00000 - 5.19615i) q^{49} -9.00000 q^{53} +9.00000 q^{55} +(-6.00000 + 10.3923i) q^{59} +(-4.00000 - 6.92820i) q^{61} +(-6.00000 - 10.3923i) q^{65} +(7.00000 - 12.1244i) q^{67} -7.00000 q^{73} +(1.50000 - 2.59808i) q^{77} +(4.00000 + 6.92820i) q^{79} +(1.50000 + 2.59808i) q^{83} +18.0000 q^{89} -4.00000 q^{91} +(-3.00000 + 5.19615i) q^{95} +(0.500000 + 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - q^{7} + 3 q^{11} + 4 q^{13} - 4 q^{19} + 6 q^{23} - 4 q^{25} + 6 q^{29} + 5 q^{31} - 6 q^{35} + 4 q^{37} - 6 q^{41} - 10 q^{43} - 6 q^{47} + 6 q^{49} - 18 q^{53} + 18 q^{55} - 12 q^{59}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 + 5.19615i 0.557086 + 0.964901i 0.997738 + 0.0672232i \(0.0214140\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(30\) 0 0
\(31\) 2.50000 4.33013i 0.449013 0.777714i −0.549309 0.835619i \(-0.685109\pi\)
0.998322 + 0.0579057i \(0.0184423\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) −5.00000 8.66025i −0.762493 1.32068i −0.941562 0.336840i \(-0.890642\pi\)
0.179069 0.983836i \(-0.442691\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.00000 + 10.3923i −0.781133 + 1.35296i 0.150148 + 0.988663i \(0.452025\pi\)
−0.931282 + 0.364299i \(0.881308\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.00000 10.3923i −0.744208 1.28901i
\(66\) 0 0
\(67\) 7.00000 12.1244i 0.855186 1.48123i −0.0212861 0.999773i \(-0.506776\pi\)
0.876472 0.481452i \(-0.159891\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.50000 2.59808i 0.170941 0.296078i
\(78\) 0 0
\(79\) 4.00000 + 6.92820i 0.450035 + 0.779484i 0.998388 0.0567635i \(-0.0180781\pi\)
−0.548352 + 0.836247i \(0.684745\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.50000 + 2.59808i 0.164646 + 0.285176i 0.936530 0.350588i \(-0.114018\pi\)
−0.771883 + 0.635764i \(0.780685\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.00000 + 5.19615i −0.307794 + 0.533114i
\(96\) 0 0
\(97\) 0.500000 + 0.866025i 0.0507673 + 0.0879316i 0.890292 0.455389i \(-0.150500\pi\)
−0.839525 + 0.543321i \(0.817167\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) −2.00000 + 3.46410i −0.197066 + 0.341328i −0.947576 0.319531i \(-0.896475\pi\)
0.750510 + 0.660859i \(0.229808\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) −9.00000 15.5885i −0.839254 1.45363i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.50000 12.9904i 0.655278 1.13497i −0.326546 0.945181i \(-0.605885\pi\)
0.981824 0.189794i \(-0.0607819\pi\)
\(132\) 0 0
\(133\) 1.00000 + 1.73205i 0.0867110 + 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000 + 5.19615i 0.256307 + 0.443937i 0.965250 0.261329i \(-0.0841608\pi\)
−0.708942 + 0.705266i \(0.750827\pi\)
\(138\) 0 0
\(139\) −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i \(-0.887593\pi\)
0.768655 + 0.639664i \(0.220926\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.0000 1.00349
\(144\) 0 0
\(145\) 18.0000 1.49482
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) 0 0
\(151\) 8.50000 + 14.7224i 0.691720 + 1.19809i 0.971274 + 0.237964i \(0.0764802\pi\)
−0.279554 + 0.960130i \(0.590186\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.50000 12.9904i −0.602414 1.04341i
\(156\) 0 0
\(157\) 2.00000 3.46410i 0.159617 0.276465i −0.775113 0.631822i \(-0.782307\pi\)
0.934731 + 0.355357i \(0.115641\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.00000 5.19615i 0.232147 0.402090i −0.726293 0.687386i \(-0.758758\pi\)
0.958440 + 0.285295i \(0.0920916\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.50000 + 12.9904i 0.570214 + 0.987640i 0.996544 + 0.0830722i \(0.0264732\pi\)
−0.426329 + 0.904568i \(0.640193\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.00000 −0.672692 −0.336346 0.941739i \(-0.609191\pi\)
−0.336346 + 0.941739i \(0.609191\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 + 10.3923i 0.434145 + 0.751961i 0.997225 0.0744412i \(-0.0237173\pi\)
−0.563081 + 0.826402i \(0.690384\pi\)
\(192\) 0 0
\(193\) −2.50000 + 4.33013i −0.179954 + 0.311689i −0.941865 0.335993i \(-0.890928\pi\)
0.761911 + 0.647682i \(0.224262\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.00000 −0.641223 −0.320612 0.947211i \(-0.603888\pi\)
−0.320612 + 0.947211i \(0.603888\pi\)
\(198\) 0 0
\(199\) 7.00000 0.496217 0.248108 0.968732i \(-0.420191\pi\)
0.248108 + 0.968732i \(0.420191\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.00000 5.19615i 0.210559 0.364698i
\(204\) 0 0
\(205\) 9.00000 + 15.5885i 0.628587 + 1.08875i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.00000 5.19615i −0.207514 0.359425i
\(210\) 0 0
\(211\) −11.0000 + 19.0526i −0.757271 + 1.31163i 0.186966 + 0.982366i \(0.440135\pi\)
−0.944237 + 0.329266i \(0.893199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −30.0000 −2.04598
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.00000 + 6.92820i 0.267860 + 0.463947i 0.968309 0.249756i \(-0.0803503\pi\)
−0.700449 + 0.713702i \(0.747017\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 0 0
\(229\) −7.00000 + 12.1244i −0.462573 + 0.801200i −0.999088 0.0426906i \(-0.986407\pi\)
0.536515 + 0.843891i \(0.319740\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) −18.0000 −1.17419
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.0000 + 25.9808i −0.970269 + 1.68056i −0.275533 + 0.961292i \(0.588854\pi\)
−0.694737 + 0.719264i \(0.744479\pi\)
\(240\) 0 0
\(241\) 5.00000 + 8.66025i 0.322078 + 0.557856i 0.980917 0.194429i \(-0.0622852\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.00000 15.5885i −0.574989 0.995910i
\(246\) 0 0
\(247\) −4.00000 + 6.92820i −0.254514 + 0.440831i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000 10.3923i 0.374270 0.648254i −0.615948 0.787787i \(-0.711227\pi\)
0.990217 + 0.139533i \(0.0445601\pi\)
\(258\) 0 0
\(259\) −1.00000 1.73205i −0.0621370 0.107624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.0000 + 25.9808i 0.924940 + 1.60204i 0.791658 + 0.610964i \(0.209218\pi\)
0.133281 + 0.991078i \(0.457449\pi\)
\(264\) 0 0
\(265\) −13.5000 + 23.3827i −0.829298 + 1.43639i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 25.0000 1.51864 0.759321 0.650716i \(-0.225531\pi\)
0.759321 + 0.650716i \(0.225531\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 10.3923i 0.361814 0.626680i
\(276\) 0 0
\(277\) −4.00000 6.92820i −0.240337 0.416275i 0.720473 0.693482i \(-0.243925\pi\)
−0.960810 + 0.277207i \(0.910591\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.0000 + 20.7846i 0.715860 + 1.23991i 0.962627 + 0.270831i \(0.0872985\pi\)
−0.246767 + 0.969075i \(0.579368\pi\)
\(282\) 0 0
\(283\) 7.00000 12.1244i 0.416107 0.720718i −0.579437 0.815017i \(-0.696728\pi\)
0.995544 + 0.0942988i \(0.0300609\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.00000 + 5.19615i −0.175262 + 0.303562i −0.940252 0.340480i \(-0.889411\pi\)
0.764990 + 0.644042i \(0.222744\pi\)
\(294\) 0 0
\(295\) 18.0000 + 31.1769i 1.04800 + 1.81519i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.0000 20.7846i −0.693978 1.20201i
\(300\) 0 0
\(301\) −5.00000 + 8.66025i −0.288195 + 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −24.0000 −1.37424
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.00000 5.19615i 0.170114 0.294647i −0.768345 0.640036i \(-0.778920\pi\)
0.938460 + 0.345389i \(0.112253\pi\)
\(312\) 0 0
\(313\) 9.50000 + 16.4545i 0.536972 + 0.930062i 0.999065 + 0.0432311i \(0.0137652\pi\)
−0.462093 + 0.886831i \(0.652902\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.50000 2.59808i −0.0842484 0.145922i 0.820822 0.571184i \(-0.193516\pi\)
−0.905071 + 0.425261i \(0.860182\pi\)
\(318\) 0 0
\(319\) −9.00000 + 15.5885i −0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −16.0000 −0.887520
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.00000 + 5.19615i −0.165395 + 0.286473i
\(330\) 0 0
\(331\) −5.00000 8.66025i −0.274825 0.476011i 0.695266 0.718752i \(-0.255287\pi\)
−0.970091 + 0.242742i \(0.921953\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −21.0000 36.3731i −1.14735 1.98727i
\(336\) 0 0
\(337\) 11.0000 19.0526i 0.599208 1.03786i −0.393730 0.919226i \(-0.628816\pi\)
0.992938 0.118633i \(-0.0378512\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.0000 0.812296
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.50000 + 2.59808i −0.0805242 + 0.139472i −0.903475 0.428640i \(-0.858993\pi\)
0.822951 + 0.568112i \(0.192326\pi\)
\(348\) 0 0
\(349\) 5.00000 + 8.66025i 0.267644 + 0.463573i 0.968253 0.249973i \(-0.0804216\pi\)
−0.700609 + 0.713545i \(0.747088\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.00000 + 5.19615i 0.159674 + 0.276563i 0.934751 0.355303i \(-0.115622\pi\)
−0.775077 + 0.631867i \(0.782289\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.5000 + 18.1865i −0.549595 + 0.951927i
\(366\) 0 0
\(367\) 8.50000 + 14.7224i 0.443696 + 0.768505i 0.997960 0.0638362i \(-0.0203335\pi\)
−0.554264 + 0.832341i \(0.687000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.50000 + 7.79423i 0.233628 + 0.404656i
\(372\) 0 0
\(373\) −16.0000 + 27.7128i −0.828449 + 1.43492i 0.0708063 + 0.997490i \(0.477443\pi\)
−0.899255 + 0.437425i \(0.855891\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 20.7846i 0.613171 1.06204i −0.377531 0.925997i \(-0.623227\pi\)
0.990702 0.136047i \(-0.0434398\pi\)
\(384\) 0 0
\(385\) −4.50000 7.79423i −0.229341 0.397231i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.5000 18.1865i −0.532371 0.922094i −0.999286 0.0377914i \(-0.987968\pi\)
0.466915 0.884302i \(-0.345366\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 24.0000 1.20757
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000 10.3923i 0.299626 0.518967i −0.676425 0.736512i \(-0.736472\pi\)
0.976050 + 0.217545i \(0.0698049\pi\)
\(402\) 0 0
\(403\) −10.0000 17.3205i −0.498135 0.862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.00000 + 5.19615i 0.148704 + 0.257564i
\(408\) 0 0
\(409\) −11.5000 + 19.9186i −0.568638 + 0.984911i 0.428063 + 0.903749i \(0.359196\pi\)
−0.996701 + 0.0811615i \(0.974137\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) 9.00000 0.441793
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) −4.00000 6.92820i −0.194948 0.337660i 0.751935 0.659237i \(-0.229121\pi\)
−0.946883 + 0.321577i \(0.895787\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.00000 + 6.92820i −0.193574 + 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 0 0
\(433\) 29.0000 1.39365 0.696826 0.717241i \(-0.254595\pi\)
0.696826 + 0.717241i \(0.254595\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.00000 + 10.3923i −0.287019 + 0.497131i
\(438\) 0 0
\(439\) −9.50000 16.4545i −0.453410 0.785330i 0.545185 0.838316i \(-0.316459\pi\)
−0.998595 + 0.0529862i \(0.983126\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.00000 + 10.3923i 0.285069 + 0.493753i 0.972626 0.232377i \(-0.0746503\pi\)
−0.687557 + 0.726130i \(0.741317\pi\)
\(444\) 0 0
\(445\) 27.0000 46.7654i 1.27992 2.21689i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.00000 + 10.3923i −0.281284 + 0.487199i
\(456\) 0 0
\(457\) 0.500000 + 0.866025i 0.0233890 + 0.0405110i 0.877483 0.479608i \(-0.159221\pi\)
−0.854094 + 0.520119i \(0.825888\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.5000 18.1865i −0.489034 0.847031i 0.510887 0.859648i \(-0.329317\pi\)
−0.999920 + 0.0126168i \(0.995984\pi\)
\(462\) 0 0
\(463\) −6.50000 + 11.2583i −0.302081 + 0.523219i −0.976607 0.215032i \(-0.931015\pi\)
0.674526 + 0.738251i \(0.264348\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −27.0000 −1.24941 −0.624705 0.780860i \(-0.714781\pi\)
−0.624705 + 0.780860i \(0.714781\pi\)
\(468\) 0 0
\(469\) −14.0000 −0.646460
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.0000 25.9808i 0.689701 1.19460i
\(474\) 0 0
\(475\) 4.00000 + 6.92820i 0.183533 + 0.317888i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.00000 5.19615i −0.137073 0.237418i 0.789314 0.613990i \(-0.210436\pi\)
−0.926388 + 0.376571i \(0.877103\pi\)
\(480\) 0 0
\(481\) 4.00000 6.92820i 0.182384 0.315899i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.00000 0.136223
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −19.5000 + 33.7750i −0.880023 + 1.52424i −0.0287085 + 0.999588i \(0.509139\pi\)
−0.851314 + 0.524656i \(0.824194\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.00000 12.1244i 0.313363 0.542761i −0.665725 0.746197i \(-0.731878\pi\)
0.979088 + 0.203436i \(0.0652110\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) −9.00000 −0.400495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i \(-0.941202\pi\)
0.650556 + 0.759458i \(0.274536\pi\)
\(510\) 0 0
\(511\) 3.50000 + 6.06218i 0.154831 + 0.268175i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.00000 + 10.3923i 0.264392 + 0.457940i
\(516\) 0 0
\(517\) 9.00000 15.5885i 0.395820 0.685580i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −36.0000 −1.57719 −0.788594 0.614914i \(-0.789191\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.0000 + 20.7846i 0.519778 + 0.900281i
\(534\) 0 0
\(535\) 13.5000 23.3827i 0.583656 1.01092i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.00000 5.19615i 0.128506 0.222579i
\(546\) 0 0
\(547\) 4.00000 + 6.92820i 0.171028 + 0.296229i 0.938779 0.344519i \(-0.111958\pi\)
−0.767752 + 0.640747i \(0.778625\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.00000 10.3923i −0.255609 0.442727i
\(552\) 0 0
\(553\) 4.00000 6.92820i 0.170097 0.294617i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −27.0000 −1.14403 −0.572013 0.820244i \(-0.693837\pi\)
−0.572013 + 0.820244i \(0.693837\pi\)
\(558\) 0 0
\(559\) −40.0000 −1.69182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.50000 + 2.59808i −0.0632175 + 0.109496i −0.895902 0.444252i \(-0.853470\pi\)
0.832684 + 0.553748i \(0.186803\pi\)
\(564\) 0 0
\(565\) 9.00000 + 15.5885i 0.378633 + 0.655811i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 10.3923i −0.251533 0.435668i 0.712415 0.701758i \(-0.247601\pi\)
−0.963948 + 0.266090i \(0.914268\pi\)
\(570\) 0 0
\(571\) −2.00000 + 3.46410i −0.0836974 + 0.144968i −0.904835 0.425762i \(-0.860006\pi\)
0.821138 + 0.570730i \(0.193340\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.50000 2.59808i 0.0622305 0.107786i
\(582\) 0 0
\(583\) −13.5000 23.3827i −0.559113 0.968412i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.50000 + 2.59808i 0.0619116 + 0.107234i 0.895320 0.445424i \(-0.146947\pi\)
−0.833408 + 0.552658i \(0.813614\pi\)
\(588\) 0 0
\(589\) −5.00000 + 8.66025i −0.206021 + 0.356840i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21.0000 36.3731i 0.858037 1.48616i −0.0157622 0.999876i \(-0.505017\pi\)
0.873799 0.486287i \(-0.161649\pi\)
\(600\) 0 0
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.00000 5.19615i −0.121967 0.211254i
\(606\) 0 0
\(607\) 16.0000 27.7128i 0.649420 1.12483i −0.333842 0.942629i \(-0.608345\pi\)
0.983262 0.182199i \(-0.0583216\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −21.0000 + 36.3731i −0.845428 + 1.46432i 0.0398207 + 0.999207i \(0.487321\pi\)
−0.885249 + 0.465118i \(0.846012\pi\)
\(618\) 0 0
\(619\) −14.0000 24.2487i −0.562708 0.974638i −0.997259 0.0739910i \(-0.976426\pi\)
0.434551 0.900647i \(-0.356907\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9.00000 15.5885i −0.360577 0.624538i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 25.0000 0.995234 0.497617 0.867397i \(-0.334208\pi\)
0.497617 + 0.867397i \(0.334208\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.5000 18.1865i 0.416680 0.721711i
\(636\) 0 0
\(637\) −12.0000 20.7846i −0.475457 0.823516i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21.0000 + 36.3731i 0.829450 + 1.43665i 0.898470 + 0.439034i \(0.144679\pi\)
−0.0690201 + 0.997615i \(0.521987\pi\)
\(642\) 0 0
\(643\) −2.00000 + 3.46410i −0.0788723 + 0.136611i −0.902764 0.430137i \(-0.858465\pi\)
0.823891 + 0.566748i \(0.191799\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.5000 33.7750i 0.763094 1.32172i −0.178154 0.984003i \(-0.557013\pi\)
0.941248 0.337715i \(-0.109654\pi\)
\(654\) 0 0
\(655\) −22.5000 38.9711i −0.879148 1.52273i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.5000 + 18.1865i 0.409022 + 0.708447i 0.994780 0.102039i \(-0.0325366\pi\)
−0.585758 + 0.810486i \(0.699203\pi\)
\(660\) 0 0
\(661\) −7.00000 + 12.1244i −0.272268 + 0.471583i −0.969442 0.245319i \(-0.921107\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000 0.232670
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000 20.7846i 0.463255 0.802381i
\(672\) 0 0
\(673\) 9.50000 + 16.4545i 0.366198 + 0.634274i 0.988968 0.148132i \(-0.0473259\pi\)
−0.622770 + 0.782405i \(0.713993\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.0000 + 36.3731i 0.807096 + 1.39793i 0.914867 + 0.403755i \(0.132295\pi\)
−0.107772 + 0.994176i \(0.534372\pi\)
\(678\) 0 0
\(679\) 0.500000 0.866025i 0.0191882 0.0332350i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.0000 + 31.1769i −0.685745 + 1.18775i
\(690\) 0 0
\(691\) 22.0000 + 38.1051i 0.836919 + 1.44959i 0.892458 + 0.451130i \(0.148979\pi\)
−0.0555386 + 0.998457i \(0.517688\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.00000 + 10.3923i 0.227593 + 0.394203i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9.00000 −0.339925 −0.169963 0.985451i \(-0.554365\pi\)
−0.169963 + 0.985451i \(0.554365\pi\)
\(702\) 0 0
\(703\) −4.00000 −0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.50000 + 2.59808i −0.0564133 + 0.0977107i
\(708\) 0 0
\(709\) −22.0000 38.1051i −0.826227 1.43107i −0.900978 0.433865i \(-0.857149\pi\)
0.0747503 0.997202i \(-0.476184\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −15.0000 25.9808i −0.561754 0.972987i
\(714\) 0 0
\(715\) 18.0000 31.1769i 0.673162 1.16595i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.0000 20.7846i 0.445669 0.771921i
\(726\) 0 0
\(727\) −0.500000 0.866025i −0.0185440 0.0321191i 0.856605 0.515974i \(-0.172570\pi\)
−0.875148 + 0.483854i \(0.839236\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 11.0000 19.0526i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 42.0000 1.54709
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.00000 + 10.3923i −0.220119 + 0.381257i −0.954844 0.297108i \(-0.903978\pi\)
0.734725 + 0.678365i \(0.237311\pi\)
\(744\) 0 0
\(745\) −4.50000 7.79423i −0.164867 0.285558i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.50000 7.79423i −0.164426 0.284795i
\(750\) 0 0
\(751\) 20.5000 35.5070i 0.748056 1.29567i −0.200698 0.979653i \(-0.564321\pi\)
0.948753 0.316017i \(-0.102346\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 51.0000 1.85608
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 24.0000 41.5692i 0.869999 1.50688i 0.00800331 0.999968i \(-0.497452\pi\)
0.861996 0.506915i \(-0.169214\pi\)
\(762\) 0 0
\(763\) −1.00000 1.73205i −0.0362024 0.0627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.0000 + 41.5692i 0.866590 + 1.50098i
\(768\) 0 0
\(769\) 15.5000 26.8468i 0.558944 0.968120i −0.438641 0.898663i \(-0.644540\pi\)
0.997585 0.0694574i \(-0.0221268\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 0 0
\(775\) −20.0000 −0.718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.00000 10.3923i 0.214972 0.372343i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.00000 10.3923i −0.214149 0.370917i
\(786\) 0 0
\(787\) 16.0000 27.7128i 0.570338 0.987855i −0.426193 0.904632i \(-0.640145\pi\)
0.996531 0.0832226i \(-0.0265213\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) −32.0000 −1.13635
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.5000 33.7750i 0.690725 1.19637i −0.280875 0.959744i \(-0.590625\pi\)
0.971601 0.236627i \(-0.0760420\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.5000 18.1865i −0.370537 0.641789i
\(804\) 0 0
\(805\) −9.00000 + 15.5885i −0.317208 + 0.549421i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −30.0000 + 51.9615i −1.05085 + 1.82013i
\(816\) 0 0
\(817\) 10.0000 + 17.3205i 0.349856 + 0.605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.00000 + 5.19615i 0.104701 + 0.181347i 0.913616 0.406578i \(-0.133278\pi\)
−0.808915 + 0.587925i \(0.799945\pi\)
\(822\) 0 0
\(823\) −15.5000 + 26.8468i −0.540296 + 0.935820i 0.458591 + 0.888648i \(0.348354\pi\)
−0.998887 + 0.0471726i \(0.984979\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9.00000 15.5885i −0.311458 0.539461i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.0000 20.7846i −0.414286 0.717564i 0.581067 0.813856i \(-0.302635\pi\)
−0.995353 + 0.0962912i \(0.969302\pi\)
\(840\) 0 0
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.00000 10.3923i 0.205677 0.356244i
\(852\) 0 0
\(853\) 5.00000 + 8.66025i 0.171197 + 0.296521i 0.938839 0.344358i \(-0.111903\pi\)
−0.767642 + 0.640879i \(0.778570\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.0000 41.5692i −0.819824 1.41998i −0.905811 0.423681i \(-0.860738\pi\)
0.0859870 0.996296i \(-0.472596\pi\)
\(858\) 0 0
\(859\) −20.0000 + 34.6410i −0.682391 + 1.18194i 0.291858 + 0.956462i \(0.405727\pi\)
−0.974249 + 0.225475i \(0.927607\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 45.0000 1.53005
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12.0000 + 20.7846i −0.407072 + 0.705070i
\(870\) 0 0
\(871\) −28.0000 48.4974i −0.948744 1.64327i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.50000 2.59808i −0.0507093 0.0878310i
\(876\) 0 0
\(877\) 11.0000 19.0526i 0.371444 0.643359i −0.618344 0.785907i \(-0.712196\pi\)
0.989788 + 0.142548i \(0.0455296\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.0000 1.21287 0.606435 0.795133i \(-0.292599\pi\)
0.606435 + 0.795133i \(0.292599\pi\)
\(882\) 0 0
\(883\) −2.00000 −0.0673054 −0.0336527 0.999434i \(-0.510714\pi\)
−0.0336527 + 0.999434i \(0.510714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.00000 + 10.3923i −0.201460 + 0.348939i −0.948999 0.315279i \(-0.897902\pi\)
0.747539 + 0.664218i \(0.231235\pi\)
\(888\) 0 0
\(889\) −3.50000 6.06218i −0.117386 0.203319i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.00000 + 10.3923i 0.200782 + 0.347765i
\(894\) 0 0
\(895\) −13.5000 + 23.3827i −0.451255 + 0.781597i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.0000 1.00056
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −24.0000 + 41.5692i −0.797787 + 1.38181i
\(906\) 0 0
\(907\) 13.0000 + 22.5167i 0.431658 + 0.747653i 0.997016 0.0771920i \(-0.0245954\pi\)
−0.565358 + 0.824845i \(0.691262\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.00000 5.19615i −0.0993944 0.172156i 0.812040 0.583602i \(-0.198357\pi\)
−0.911434 + 0.411446i \(0.865024\pi\)
\(912\) 0 0
\(913\) −4.50000 + 7.79423i −0.148928 + 0.257951i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.0000 −0.495344
\(918\) 0 0
\(919\) −29.0000 −0.956622 −0.478311 0.878191i \(-0.658751\pi\)
−0.478311 + 0.878191i \(0.658751\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.00000 10.3923i −0.196854 0.340960i 0.750653 0.660697i \(-0.229739\pi\)
−0.947507 + 0.319736i \(0.896406\pi\)
\(930\) 0 0
\(931\) −6.00000 + 10.3923i −0.196642 + 0.340594i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 11.0000 0.359354 0.179677 0.983726i \(-0.442495\pi\)
0.179677 + 0.983726i \(0.442495\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −16.5000 + 28.5788i −0.537885 + 0.931644i 0.461133 + 0.887331i \(0.347443\pi\)
−0.999018 + 0.0443125i \(0.985890\pi\)
\(942\) 0 0
\(943\) 18.0000 + 31.1769i 0.586161 + 1.01526i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −25.5000 44.1673i −0.828639 1.43524i −0.899106 0.437730i \(-0.855783\pi\)
0.0704677 0.997514i \(-0.477551\pi\)
\(948\) 0 0
\(949\) −14.0000 + 24.2487i −0.454459 + 0.787146i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 36.0000 1.16493
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.00000 5.19615i 0.0968751 0.167793i
\(960\) 0 0
\(961\) 3.00000 + 5.19615i 0.0967742 + 0.167618i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.50000 + 12.9904i 0.241434 + 0.418175i
\(966\) 0 0
\(967\) 11.5000 19.9186i 0.369815 0.640538i −0.619721 0.784822i \(-0.712754\pi\)
0.989536 + 0.144283i \(0.0460877\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −27.0000 −0.866471 −0.433236 0.901281i \(-0.642628\pi\)
−0.433236 + 0.901281i \(0.642628\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.0000 + 36.3731i −0.671850 + 1.16368i 0.305530 + 0.952183i \(0.401167\pi\)
−0.977379 + 0.211495i \(0.932167\pi\)
\(978\) 0 0
\(979\) 27.0000 + 46.7654i 0.862924 + 1.49463i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.00000 5.19615i −0.0956851 0.165732i 0.814209 0.580572i \(-0.197171\pi\)
−0.909894 + 0.414840i \(0.863838\pi\)
\(984\) 0 0
\(985\) −13.5000 + 23.3827i −0.430146 + 0.745034i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) −47.0000 −1.49300 −0.746502 0.665383i \(-0.768268\pi\)
−0.746502 + 0.665383i \(0.768268\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10.5000 18.1865i 0.332872 0.576552i
\(996\) 0 0
\(997\) 14.0000 + 24.2487i 0.443384 + 0.767964i 0.997938 0.0641836i \(-0.0204443\pi\)
−0.554554 + 0.832148i \(0.687111\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.2.i.o.433.1 2
3.2 odd 2 1296.2.i.c.433.1 2
4.3 odd 2 162.2.c.b.109.1 2
9.2 odd 6 1296.2.i.c.865.1 2
9.4 even 3 432.2.a.b.1.1 1
9.5 odd 6 432.2.a.g.1.1 1
9.7 even 3 inner 1296.2.i.o.865.1 2
12.11 even 2 162.2.c.c.109.1 2
36.7 odd 6 162.2.c.b.55.1 2
36.11 even 6 162.2.c.c.55.1 2
36.23 even 6 54.2.a.a.1.1 1
36.31 odd 6 54.2.a.b.1.1 yes 1
72.5 odd 6 1728.2.a.d.1.1 1
72.13 even 6 1728.2.a.z.1.1 1
72.59 even 6 1728.2.a.c.1.1 1
72.67 odd 6 1728.2.a.y.1.1 1
180.23 odd 12 1350.2.c.b.649.2 2
180.59 even 6 1350.2.a.r.1.1 1
180.67 even 12 1350.2.c.k.649.2 2
180.103 even 12 1350.2.c.k.649.1 2
180.139 odd 6 1350.2.a.h.1.1 1
180.167 odd 12 1350.2.c.b.649.1 2
252.139 even 6 2646.2.a.bd.1.1 1
252.167 odd 6 2646.2.a.a.1.1 1
396.131 odd 6 6534.2.a.bc.1.1 1
396.175 even 6 6534.2.a.b.1.1 1
468.103 odd 6 9126.2.a.r.1.1 1
468.311 even 6 9126.2.a.u.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.2.a.a.1.1 1 36.23 even 6
54.2.a.b.1.1 yes 1 36.31 odd 6
162.2.c.b.55.1 2 36.7 odd 6
162.2.c.b.109.1 2 4.3 odd 2
162.2.c.c.55.1 2 36.11 even 6
162.2.c.c.109.1 2 12.11 even 2
432.2.a.b.1.1 1 9.4 even 3
432.2.a.g.1.1 1 9.5 odd 6
1296.2.i.c.433.1 2 3.2 odd 2
1296.2.i.c.865.1 2 9.2 odd 6
1296.2.i.o.433.1 2 1.1 even 1 trivial
1296.2.i.o.865.1 2 9.7 even 3 inner
1350.2.a.h.1.1 1 180.139 odd 6
1350.2.a.r.1.1 1 180.59 even 6
1350.2.c.b.649.1 2 180.167 odd 12
1350.2.c.b.649.2 2 180.23 odd 12
1350.2.c.k.649.1 2 180.103 even 12
1350.2.c.k.649.2 2 180.67 even 12
1728.2.a.c.1.1 1 72.59 even 6
1728.2.a.d.1.1 1 72.5 odd 6
1728.2.a.y.1.1 1 72.67 odd 6
1728.2.a.z.1.1 1 72.13 even 6
2646.2.a.a.1.1 1 252.167 odd 6
2646.2.a.bd.1.1 1 252.139 even 6
6534.2.a.b.1.1 1 396.175 even 6
6534.2.a.bc.1.1 1 396.131 odd 6
9126.2.a.r.1.1 1 468.103 odd 6
9126.2.a.u.1.1 1 468.311 even 6