L(s) = 1 | + 4·7-s + 20·13-s + 40·19-s + 46·25-s + 76·31-s + 128·37-s − 92·43-s − 78·49-s − 124·61-s − 212·67-s − 208·73-s + 28·79-s + 80·91-s − 28·97-s + 148·103-s − 64·109-s + 394·121-s + 127-s + 131-s + 160·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 4/7·7-s + 1.53·13-s + 2.10·19-s + 1.83·25-s + 2.45·31-s + 3.45·37-s − 2.13·43-s − 1.59·49-s − 2.03·61-s − 3.16·67-s − 2.84·73-s + 0.354·79-s + 0.879·91-s − 0.288·97-s + 1.43·103-s − 0.587·109-s + 3.25·121-s + 0.00787·127-s + 0.00763·131-s + 1.20·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + ⋯ |
Λ(s)=(=((216⋅316)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅316)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅316
|
Sign: |
1
|
Analytic conductor: |
1.55510×106 |
Root analytic conductor: |
5.94251 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅316, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
10.36720252 |
L(21) |
≈ |
10.36720252 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | (1−23T2+p4T4)2 |
| 7 | D4 | (1−2T+45T2−2p2T3+p4T4)2 |
| 11 | D4×C2 | 1−394T2+66147T4−394p4T6+p8T8 |
| 13 | D4 | (1−10T+147T2−10p2T3+p4T4)2 |
| 17 | D4×C2 | 1−796T2+294342T4−796p4T6+p8T8 |
| 19 | D4 | (1−20T+606T2−20p2T3+p4T4)2 |
| 23 | D4×C2 | 1−2026T2+1583907T4−2026p4T6+p8T8 |
| 29 | D4×C2 | 1−3166T2+3912675T4−3166p4T6+p8T8 |
| 31 | D4 | (1−38T+1797T2−38p2T3+p4T4)2 |
| 37 | D4 | (1−64T+3546T2−64p2T3+p4T4)2 |
| 41 | D4×C2 | 1−2782T2+4157187T4−2782p4T6+p8T8 |
| 43 | D4 | (1+46T+87pT2+46p2T3+p4T4)2 |
| 47 | D4×C2 | 1−6586T2+19745907T4−6586p4T6+p8T8 |
| 53 | D4×C2 | 1−2236T2−2409114T4−2236p4T6+p8T8 |
| 59 | D4×C2 | 1−5194T2+14880867T4−5194p4T6+p8T8 |
| 61 | D4 | (1+62T+6459T2+62p2T3+p4T4)2 |
| 67 | D4 | (1+106T+11301T2+106p2T3+p4T4)2 |
| 71 | D4×C2 | 1−12460T2+77194662T4−12460p4T6+p8T8 |
| 73 | D4 | (1+104T+11418T2+104p2T3+p4T4)2 |
| 79 | D4 | (1−14T+11181T2−14p2T3+p4T4)2 |
| 83 | D4×C2 | 1−2842T2+75503283T4−2842p4T6+p8T8 |
| 89 | D4×C2 | 1−8860T2+51019782T4−8860p4T6+p8T8 |
| 97 | D4 | (1+14T+8283T2+14p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.63674795616273895876505659725, −6.42479732401661562307382833439, −6.19606488363671555771599339384, −6.02930158113953161419912389683, −5.96940706798490210695117946167, −5.60357807915222880898435233247, −5.45078866833320293781740234946, −4.94997701080550235673402033966, −4.92721674740632177856721791498, −4.60477279413183678912692375328, −4.42843610949763959023458787702, −4.35137207489972473608390977251, −4.15019956964612132070685409468, −3.47557114106265314696308564854, −3.32062594632506754131328687417, −3.12099422938010203503235940134, −2.94982430615021434405385558993, −2.82858162081145648568382306321, −2.48722870255257886592539478473, −1.71761702231169970825154405321, −1.70575107382543915709252610797, −1.33684776117530933015748656369, −1.12732748443671279187222178068, −0.64340256405058581337037716440, −0.51741568217380455299230901792,
0.51741568217380455299230901792, 0.64340256405058581337037716440, 1.12732748443671279187222178068, 1.33684776117530933015748656369, 1.70575107382543915709252610797, 1.71761702231169970825154405321, 2.48722870255257886592539478473, 2.82858162081145648568382306321, 2.94982430615021434405385558993, 3.12099422938010203503235940134, 3.32062594632506754131328687417, 3.47557114106265314696308564854, 4.15019956964612132070685409468, 4.35137207489972473608390977251, 4.42843610949763959023458787702, 4.60477279413183678912692375328, 4.92721674740632177856721791498, 4.94997701080550235673402033966, 5.45078866833320293781740234946, 5.60357807915222880898435233247, 5.96940706798490210695117946167, 6.02930158113953161419912389683, 6.19606488363671555771599339384, 6.42479732401661562307382833439, 6.63674795616273895876505659725