Properties

Label 1296.3.e.g
Level 12961296
Weight 33
Character orbit 1296.e
Analytic conductor 35.31335.313
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1296,3,Mod(161,1296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1296.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 1296=2434 1296 = 2^{4} \cdot 3^{4}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 1296.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 35.313442261135.3134422611
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2233 2^{2}\cdot 3^{3}
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q5+(β2+1)q7+(β3+β1)q11+(2β2+5)q13+(2β3+2β1)q17+(2β2+10)q19+(β3β1)q23++(14β27)q97+O(q100) q + \beta_{3} q^{5} + (\beta_{2} + 1) q^{7} + ( - \beta_{3} + \beta_1) q^{11} + ( - 2 \beta_{2} + 5) q^{13} + (2 \beta_{3} + 2 \beta_1) q^{17} + (2 \beta_{2} + 10) q^{19} + (\beta_{3} - \beta_1) q^{23}+ \cdots + ( - 14 \beta_{2} - 7) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q7+20q13+40q198q25+76q31+128q3792q43+24q49+108q55124q61212q67208q73+28q79216q85412q9128q97+O(q100) 4 q + 4 q^{7} + 20 q^{13} + 40 q^{19} - 8 q^{25} + 76 q^{31} + 128 q^{37} - 92 q^{43} + 24 q^{49} + 108 q^{55} - 124 q^{61} - 212 q^{67} - 208 q^{73} + 28 q^{79} - 216 q^{85} - 412 q^{91} - 28 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (3ν3)/2 ( 3\nu^{3} ) / 2 Copy content Toggle raw display
β2\beta_{2}== (3ν3+12ν)/2 ( -3\nu^{3} + 12\nu ) / 2 Copy content Toggle raw display
β3\beta_{3}== 3ν23 3\nu^{2} - 3 Copy content Toggle raw display
ν\nu== (β2+β1)/6 ( \beta_{2} + \beta_1 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (β3+3)/3 ( \beta_{3} + 3 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (2β1)/3 ( 2\beta_1 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1296Z)×\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times.

nn 325325 11351135 12171217
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
161.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
0 0 0 5.19615i 0 −6.34847 0 0 0
161.2 0 0 0 5.19615i 0 8.34847 0 0 0
161.3 0 0 0 5.19615i 0 −6.34847 0 0 0
161.4 0 0 0 5.19615i 0 8.34847 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1296.3.e.g 4
3.b odd 2 1 inner 1296.3.e.g 4
4.b odd 2 1 162.3.b.a 4
9.c even 3 1 144.3.q.c 4
9.c even 3 1 432.3.q.d 4
9.d odd 6 1 144.3.q.c 4
9.d odd 6 1 432.3.q.d 4
12.b even 2 1 162.3.b.a 4
36.f odd 6 1 18.3.d.a 4
36.f odd 6 1 54.3.d.a 4
36.h even 6 1 18.3.d.a 4
36.h even 6 1 54.3.d.a 4
72.j odd 6 1 576.3.q.e 4
72.j odd 6 1 1728.3.q.c 4
72.l even 6 1 576.3.q.f 4
72.l even 6 1 1728.3.q.d 4
72.n even 6 1 576.3.q.e 4
72.n even 6 1 1728.3.q.c 4
72.p odd 6 1 576.3.q.f 4
72.p odd 6 1 1728.3.q.d 4
180.n even 6 1 450.3.i.b 4
180.n even 6 1 1350.3.i.b 4
180.p odd 6 1 450.3.i.b 4
180.p odd 6 1 1350.3.i.b 4
180.v odd 12 2 450.3.k.a 8
180.v odd 12 2 1350.3.k.a 8
180.x even 12 2 450.3.k.a 8
180.x even 12 2 1350.3.k.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.3.d.a 4 36.f odd 6 1
18.3.d.a 4 36.h even 6 1
54.3.d.a 4 36.f odd 6 1
54.3.d.a 4 36.h even 6 1
144.3.q.c 4 9.c even 3 1
144.3.q.c 4 9.d odd 6 1
162.3.b.a 4 4.b odd 2 1
162.3.b.a 4 12.b even 2 1
432.3.q.d 4 9.c even 3 1
432.3.q.d 4 9.d odd 6 1
450.3.i.b 4 180.n even 6 1
450.3.i.b 4 180.p odd 6 1
450.3.k.a 8 180.v odd 12 2
450.3.k.a 8 180.x even 12 2
576.3.q.e 4 72.j odd 6 1
576.3.q.e 4 72.n even 6 1
576.3.q.f 4 72.l even 6 1
576.3.q.f 4 72.p odd 6 1
1296.3.e.g 4 1.a even 1 1 trivial
1296.3.e.g 4 3.b odd 2 1 inner
1350.3.i.b 4 180.n even 6 1
1350.3.i.b 4 180.p odd 6 1
1350.3.k.a 8 180.v odd 12 2
1350.3.k.a 8 180.x even 12 2
1728.3.q.c 4 72.j odd 6 1
1728.3.q.c 4 72.n even 6 1
1728.3.q.d 4 72.l even 6 1
1728.3.q.d 4 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(1296,[χ])S_{3}^{\mathrm{new}}(1296, [\chi]):

T52+27 T_{5}^{2} + 27 Copy content Toggle raw display
T722T753 T_{7}^{2} - 2T_{7} - 53 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+27)2 (T^{2} + 27)^{2} Copy content Toggle raw display
77 (T22T53)2 (T^{2} - 2 T - 53)^{2} Copy content Toggle raw display
1111 T4+90T2+81 T^{4} + 90T^{2} + 81 Copy content Toggle raw display
1313 (T210T191)2 (T^{2} - 10 T - 191)^{2} Copy content Toggle raw display
1717 T4+360T2+1296 T^{4} + 360T^{2} + 1296 Copy content Toggle raw display
1919 (T220T116)2 (T^{2} - 20 T - 116)^{2} Copy content Toggle raw display
2323 T4+90T2+81 T^{4} + 90T^{2} + 81 Copy content Toggle raw display
2929 T4+198T2+2025 T^{4} + 198T^{2} + 2025 Copy content Toggle raw display
3131 (T238T125)2 (T^{2} - 38 T - 125)^{2} Copy content Toggle raw display
3737 (T264T+808)2 (T^{2} - 64 T + 808)^{2} Copy content Toggle raw display
4141 T4+3942T2+455625 T^{4} + 3942 T^{2} + 455625 Copy content Toggle raw display
4343 (T2+46T+43)2 (T^{2} + 46 T + 43)^{2} Copy content Toggle raw display
4747 T4+2250T2+408321 T^{4} + 2250 T^{2} + 408321 Copy content Toggle raw display
5353 T4+9000T2+810000 T^{4} + 9000 T^{2} + 810000 Copy content Toggle raw display
5959 T4+8730T2+2954961 T^{4} + 8730 T^{2} + 2954961 Copy content Toggle raw display
6161 (T2+62T983)2 (T^{2} + 62 T - 983)^{2} Copy content Toggle raw display
6767 (T2+106T+2323)2 (T^{2} + 106 T + 2323)^{2} Copy content Toggle raw display
7171 T4+7704T2+2396304 T^{4} + 7704 T^{2} + 2396304 Copy content Toggle raw display
7373 (T2+104T+760)2 (T^{2} + 104 T + 760)^{2} Copy content Toggle raw display
7979 (T214T1301)2 (T^{2} - 14 T - 1301)^{2} Copy content Toggle raw display
8383 T4+24714T2+131262849 T^{4} + 24714 T^{2} + 131262849 Copy content Toggle raw display
8989 T4+22824T2+36144144 T^{4} + 22824 T^{2} + 36144144 Copy content Toggle raw display
9797 (T2+14T10535)2 (T^{2} + 14 T - 10535)^{2} Copy content Toggle raw display
show more
show less