Properties

Label 144.3.q.c
Level $144$
Weight $3$
Character orbit 144.q
Analytic conductor $3.924$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,3,Mod(65,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.92371580679\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - 2 \beta_1 + 1) q^{3} + ( - 3 \beta_1 - 3) q^{5} + (3 \beta_{2} - \beta_1) q^{7} + ( - 2 \beta_{3} + 4 \beta_{2} + 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} - 2 \beta_1 + 1) q^{3} + ( - 3 \beta_1 - 3) q^{5} + (3 \beta_{2} - \beta_1) q^{7} + ( - 2 \beta_{3} + 4 \beta_{2} + 3) q^{9} + ( - 2 \beta_{3} + \beta_{2} + 3 \beta_1 - 6) q^{11} + ( - 6 \beta_{3} + 6 \beta_{2} + \cdots - 5) q^{13}+ \cdots + ( - 6 \beta_{3} - 15 \beta_{2} + \cdots - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18 q^{5} - 2 q^{7} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 18 q^{5} - 2 q^{7} + 12 q^{9} - 18 q^{11} - 10 q^{13} - 18 q^{15} + 40 q^{19} - 42 q^{21} - 18 q^{23} + 4 q^{25} + 18 q^{29} - 38 q^{31} + 54 q^{33} + 128 q^{37} + 102 q^{39} - 126 q^{41} + 46 q^{43} - 54 q^{45} - 54 q^{47} - 12 q^{49} + 72 q^{51} + 108 q^{55} + 144 q^{57} - 126 q^{59} + 62 q^{61} - 222 q^{63} + 90 q^{65} + 106 q^{67} + 18 q^{69} - 208 q^{73} + 12 q^{75} - 90 q^{77} - 14 q^{79} - 252 q^{81} + 378 q^{83} + 108 q^{85} + 54 q^{87} - 412 q^{91} + 222 q^{93} - 180 q^{95} + 14 q^{97} - 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 4\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{3} + 4\beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(1 - \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
0 −2.44949 + 1.73205i 0 −4.50000 + 2.59808i 0 3.17423 5.49794i 0 3.00000 8.48528i 0
65.2 0 2.44949 + 1.73205i 0 −4.50000 + 2.59808i 0 −4.17423 + 7.22999i 0 3.00000 + 8.48528i 0
113.1 0 −2.44949 1.73205i 0 −4.50000 2.59808i 0 3.17423 + 5.49794i 0 3.00000 + 8.48528i 0
113.2 0 2.44949 1.73205i 0 −4.50000 2.59808i 0 −4.17423 7.22999i 0 3.00000 8.48528i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.3.q.c 4
3.b odd 2 1 432.3.q.d 4
4.b odd 2 1 18.3.d.a 4
8.b even 2 1 576.3.q.e 4
8.d odd 2 1 576.3.q.f 4
9.c even 3 1 432.3.q.d 4
9.c even 3 1 1296.3.e.g 4
9.d odd 6 1 inner 144.3.q.c 4
9.d odd 6 1 1296.3.e.g 4
12.b even 2 1 54.3.d.a 4
20.d odd 2 1 450.3.i.b 4
20.e even 4 2 450.3.k.a 8
24.f even 2 1 1728.3.q.d 4
24.h odd 2 1 1728.3.q.c 4
36.f odd 6 1 54.3.d.a 4
36.f odd 6 1 162.3.b.a 4
36.h even 6 1 18.3.d.a 4
36.h even 6 1 162.3.b.a 4
60.h even 2 1 1350.3.i.b 4
60.l odd 4 2 1350.3.k.a 8
72.j odd 6 1 576.3.q.e 4
72.l even 6 1 576.3.q.f 4
72.n even 6 1 1728.3.q.c 4
72.p odd 6 1 1728.3.q.d 4
180.n even 6 1 450.3.i.b 4
180.p odd 6 1 1350.3.i.b 4
180.v odd 12 2 450.3.k.a 8
180.x even 12 2 1350.3.k.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.3.d.a 4 4.b odd 2 1
18.3.d.a 4 36.h even 6 1
54.3.d.a 4 12.b even 2 1
54.3.d.a 4 36.f odd 6 1
144.3.q.c 4 1.a even 1 1 trivial
144.3.q.c 4 9.d odd 6 1 inner
162.3.b.a 4 36.f odd 6 1
162.3.b.a 4 36.h even 6 1
432.3.q.d 4 3.b odd 2 1
432.3.q.d 4 9.c even 3 1
450.3.i.b 4 20.d odd 2 1
450.3.i.b 4 180.n even 6 1
450.3.k.a 8 20.e even 4 2
450.3.k.a 8 180.v odd 12 2
576.3.q.e 4 8.b even 2 1
576.3.q.e 4 72.j odd 6 1
576.3.q.f 4 8.d odd 2 1
576.3.q.f 4 72.l even 6 1
1296.3.e.g 4 9.c even 3 1
1296.3.e.g 4 9.d odd 6 1
1350.3.i.b 4 60.h even 2 1
1350.3.i.b 4 180.p odd 6 1
1350.3.k.a 8 60.l odd 4 2
1350.3.k.a 8 180.x even 12 2
1728.3.q.c 4 24.h odd 2 1
1728.3.q.c 4 72.n even 6 1
1728.3.q.d 4 24.f even 2 1
1728.3.q.d 4 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 9T_{5} + 27 \) acting on \(S_{3}^{\mathrm{new}}(144, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 6T^{2} + 81 \) Copy content Toggle raw display
$5$ \( (T^{2} + 9 T + 27)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 2809 \) Copy content Toggle raw display
$11$ \( T^{4} + 18 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{4} + 10 T^{3} + \cdots + 36481 \) Copy content Toggle raw display
$17$ \( T^{4} + 360T^{2} + 1296 \) Copy content Toggle raw display
$19$ \( (T^{2} - 20 T - 116)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 18 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$29$ \( T^{4} - 18 T^{3} + \cdots + 2025 \) Copy content Toggle raw display
$31$ \( T^{4} + 38 T^{3} + \cdots + 15625 \) Copy content Toggle raw display
$37$ \( (T^{2} - 64 T + 808)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 126 T^{3} + \cdots + 455625 \) Copy content Toggle raw display
$43$ \( T^{4} - 46 T^{3} + \cdots + 1849 \) Copy content Toggle raw display
$47$ \( T^{4} + 54 T^{3} + \cdots + 408321 \) Copy content Toggle raw display
$53$ \( T^{4} + 9000 T^{2} + 810000 \) Copy content Toggle raw display
$59$ \( T^{4} + 126 T^{3} + \cdots + 2954961 \) Copy content Toggle raw display
$61$ \( T^{4} - 62 T^{3} + \cdots + 966289 \) Copy content Toggle raw display
$67$ \( T^{4} - 106 T^{3} + \cdots + 5396329 \) Copy content Toggle raw display
$71$ \( T^{4} + 7704 T^{2} + 2396304 \) Copy content Toggle raw display
$73$ \( (T^{2} + 104 T + 760)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 14 T^{3} + \cdots + 1692601 \) Copy content Toggle raw display
$83$ \( T^{4} - 378 T^{3} + \cdots + 131262849 \) Copy content Toggle raw display
$89$ \( T^{4} + 22824 T^{2} + 36144144 \) Copy content Toggle raw display
$97$ \( T^{4} - 14 T^{3} + \cdots + 110986225 \) Copy content Toggle raw display
show more
show less