L(s) = 1 | + (−2.44 + 1.73i)3-s + (−4.5 + 2.59i)5-s + (3.17 − 5.49i)7-s + (2.99 − 8.48i)9-s + (−8.17 − 4.71i)11-s + (−9.84 − 17.0i)13-s + (6.52 − 14.1i)15-s − 1.90i·17-s − 4.69·19-s + (1.74 + 18.9i)21-s + (−8.17 + 4.71i)23-s + (1 − 1.73i)25-s + (7.34 + 25.9i)27-s + (−2.84 − 1.64i)29-s + (−20.5 − 35.5i)31-s + ⋯ |
L(s) = 1 | + (−0.816 + 0.577i)3-s + (−0.900 + 0.519i)5-s + (0.453 − 0.785i)7-s + (0.333 − 0.942i)9-s + (−0.743 − 0.429i)11-s + (−0.757 − 1.31i)13-s + (0.434 − 0.943i)15-s − 0.112i·17-s − 0.247·19-s + (0.0832 + 0.903i)21-s + (−0.355 + 0.205i)23-s + (0.0400 − 0.0692i)25-s + (0.272 + 0.962i)27-s + (−0.0982 − 0.0567i)29-s + (−0.662 − 1.14i)31-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(−0.491+0.870i)Λ(3−s)
Λ(s)=(=(144s/2ΓC(s+1)L(s)(−0.491+0.870i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
−0.491+0.870i
|
Analytic conductor: |
3.92371 |
Root analytic conductor: |
1.98083 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1), −0.491+0.870i)
|
Particular Values
L(23) |
≈ |
0.172408−0.295463i |
L(21) |
≈ |
0.172408−0.295463i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(2.44−1.73i)T |
good | 5 | 1+(4.5−2.59i)T+(12.5−21.6i)T2 |
| 7 | 1+(−3.17+5.49i)T+(−24.5−42.4i)T2 |
| 11 | 1+(8.17+4.71i)T+(60.5+104.i)T2 |
| 13 | 1+(9.84+17.0i)T+(−84.5+146.i)T2 |
| 17 | 1+1.90iT−289T2 |
| 19 | 1+4.69T+361T2 |
| 23 | 1+(8.17−4.71i)T+(264.5−458.i)T2 |
| 29 | 1+(2.84+1.64i)T+(420.5+728.i)T2 |
| 31 | 1+(20.5+35.5i)T+(−480.5+832.i)T2 |
| 37 | 1−17.3T+1.36e3T2 |
| 41 | 1+(53.5−30.9i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(−0.477+0.826i)T+(−924.5−1.60e3i)T2 |
| 47 | 1+(−12.2−7.05i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1+9.53iT−2.80e3T2 |
| 59 | 1+(79.2−45.7i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−37.5+65.0i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−15.4−26.8i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+85.9iT−5.04e3T2 |
| 73 | 1+96.0T+5.32e3T2 |
| 79 | 1+(−14.8+25.7i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−76.1−43.9i)T+(3.44e3+5.96e3i)T2 |
| 89 | 1+41.3iT−7.92e3T2 |
| 97 | 1+(47.9−83.0i)T+(−4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.32493536890250491468456472547, −11.26398465905026015401742623605, −10.70230545087120722465878286628, −9.801104878953477333529258699936, −8.031322823126616782190067622453, −7.28474345165809796533211691652, −5.75716243159949674768872300727, −4.56958643147551926490471684925, −3.32261068894178789500529427228, −0.23865681734576980419040911121,
2.02762009226977346469245053078, 4.45162547544470042864514415365, 5.35216484770036810621889406606, 6.83878757895171972935704247588, 7.83479549471841972144866279190, 8.851959238502752369320578238840, 10.34581530760745546153594307687, 11.56228005899833088163227017937, 12.09208446929514916313846135371, 12.79828574425227898444252765715