Properties

Label 450.3.i.b
Level 450450
Weight 33
Character orbit 450.i
Analytic conductor 12.26212.262
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,3,Mod(101,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.101");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 450.i (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.261611896212.2616118962
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3+β1)q2+(β32β22β1+1)q3+(2β2+2)q4+(β3+2β2β14)q6+(3β3β2+3β1)q7++(9β3+27β2++18)q99+O(q100) q + ( - \beta_{3} + \beta_1) q^{2} + (\beta_{3} - 2 \beta_{2} - 2 \beta_1 + 1) q^{3} + ( - 2 \beta_{2} + 2) q^{4} + ( - \beta_{3} + 2 \beta_{2} - \beta_1 - 4) q^{6} + (3 \beta_{3} - \beta_{2} + 3 \beta_1) q^{7}+ \cdots + (9 \beta_{3} + 27 \beta_{2} + \cdots + 18) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q412q62q7+12q9+18q1112q12+10q13+36q148q16+24q1840q1942q21+12q2218q238q28+18q29+38q3154q33++126q99+O(q100) 4 q + 4 q^{4} - 12 q^{6} - 2 q^{7} + 12 q^{9} + 18 q^{11} - 12 q^{12} + 10 q^{13} + 36 q^{14} - 8 q^{16} + 24 q^{18} - 40 q^{19} - 42 q^{21} + 12 q^{22} - 18 q^{23} - 8 q^{28} + 18 q^{29} + 38 q^{31} - 54 q^{33}+ \cdots + 126 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/450Z)×\left(\mathbb{Z}/450\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1β21 - \beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
101.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i 2.44949 + 1.73205i 1.00000 + 1.73205i 0 −1.77526 3.85337i −4.17423 + 7.22999i 2.82843i 3.00000 + 8.48528i 0
101.2 1.22474 + 0.707107i −2.44949 + 1.73205i 1.00000 + 1.73205i 0 −4.22474 + 0.389270i 3.17423 5.49794i 2.82843i 3.00000 8.48528i 0
401.1 −1.22474 + 0.707107i 2.44949 1.73205i 1.00000 1.73205i 0 −1.77526 + 3.85337i −4.17423 7.22999i 2.82843i 3.00000 8.48528i 0
401.2 1.22474 0.707107i −2.44949 1.73205i 1.00000 1.73205i 0 −4.22474 0.389270i 3.17423 + 5.49794i 2.82843i 3.00000 + 8.48528i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.3.i.b 4
3.b odd 2 1 1350.3.i.b 4
5.b even 2 1 18.3.d.a 4
5.c odd 4 2 450.3.k.a 8
9.c even 3 1 1350.3.i.b 4
9.d odd 6 1 inner 450.3.i.b 4
15.d odd 2 1 54.3.d.a 4
15.e even 4 2 1350.3.k.a 8
20.d odd 2 1 144.3.q.c 4
40.e odd 2 1 576.3.q.e 4
40.f even 2 1 576.3.q.f 4
45.h odd 6 1 18.3.d.a 4
45.h odd 6 1 162.3.b.a 4
45.j even 6 1 54.3.d.a 4
45.j even 6 1 162.3.b.a 4
45.k odd 12 2 1350.3.k.a 8
45.l even 12 2 450.3.k.a 8
60.h even 2 1 432.3.q.d 4
120.i odd 2 1 1728.3.q.d 4
120.m even 2 1 1728.3.q.c 4
180.n even 6 1 144.3.q.c 4
180.n even 6 1 1296.3.e.g 4
180.p odd 6 1 432.3.q.d 4
180.p odd 6 1 1296.3.e.g 4
360.z odd 6 1 1728.3.q.c 4
360.bd even 6 1 576.3.q.e 4
360.bh odd 6 1 576.3.q.f 4
360.bk even 6 1 1728.3.q.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.3.d.a 4 5.b even 2 1
18.3.d.a 4 45.h odd 6 1
54.3.d.a 4 15.d odd 2 1
54.3.d.a 4 45.j even 6 1
144.3.q.c 4 20.d odd 2 1
144.3.q.c 4 180.n even 6 1
162.3.b.a 4 45.h odd 6 1
162.3.b.a 4 45.j even 6 1
432.3.q.d 4 60.h even 2 1
432.3.q.d 4 180.p odd 6 1
450.3.i.b 4 1.a even 1 1 trivial
450.3.i.b 4 9.d odd 6 1 inner
450.3.k.a 8 5.c odd 4 2
450.3.k.a 8 45.l even 12 2
576.3.q.e 4 40.e odd 2 1
576.3.q.e 4 360.bd even 6 1
576.3.q.f 4 40.f even 2 1
576.3.q.f 4 360.bh odd 6 1
1296.3.e.g 4 180.n even 6 1
1296.3.e.g 4 180.p odd 6 1
1350.3.i.b 4 3.b odd 2 1
1350.3.i.b 4 9.c even 3 1
1350.3.k.a 8 15.e even 4 2
1350.3.k.a 8 45.k odd 12 2
1728.3.q.c 4 120.m even 2 1
1728.3.q.c 4 360.z odd 6 1
1728.3.q.d 4 120.i odd 2 1
1728.3.q.d 4 360.bk even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T74+2T73+57T72106T7+2809 T_{7}^{4} + 2T_{7}^{3} + 57T_{7}^{2} - 106T_{7} + 2809 acting on S3new(450,[χ])S_{3}^{\mathrm{new}}(450, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T42T2+4 T^{4} - 2T^{2} + 4 Copy content Toggle raw display
33 T46T2+81 T^{4} - 6T^{2} + 81 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+2T3++2809 T^{4} + 2 T^{3} + \cdots + 2809 Copy content Toggle raw display
1111 T418T3++81 T^{4} - 18 T^{3} + \cdots + 81 Copy content Toggle raw display
1313 T410T3++36481 T^{4} - 10 T^{3} + \cdots + 36481 Copy content Toggle raw display
1717 T4+360T2+1296 T^{4} + 360T^{2} + 1296 Copy content Toggle raw display
1919 (T2+20T116)2 (T^{2} + 20 T - 116)^{2} Copy content Toggle raw display
2323 T4+18T3++81 T^{4} + 18 T^{3} + \cdots + 81 Copy content Toggle raw display
2929 T418T3++2025 T^{4} - 18 T^{3} + \cdots + 2025 Copy content Toggle raw display
3131 T438T3++15625 T^{4} - 38 T^{3} + \cdots + 15625 Copy content Toggle raw display
3737 (T2+64T+808)2 (T^{2} + 64 T + 808)^{2} Copy content Toggle raw display
4141 T4+126T3++455625 T^{4} + 126 T^{3} + \cdots + 455625 Copy content Toggle raw display
4343 T446T3++1849 T^{4} - 46 T^{3} + \cdots + 1849 Copy content Toggle raw display
4747 T4+54T3++408321 T^{4} + 54 T^{3} + \cdots + 408321 Copy content Toggle raw display
5353 T4+9000T2+810000 T^{4} + 9000 T^{2} + 810000 Copy content Toggle raw display
5959 T4126T3++2954961 T^{4} - 126 T^{3} + \cdots + 2954961 Copy content Toggle raw display
6161 T462T3++966289 T^{4} - 62 T^{3} + \cdots + 966289 Copy content Toggle raw display
6767 T4106T3++5396329 T^{4} - 106 T^{3} + \cdots + 5396329 Copy content Toggle raw display
7171 T4+7704T2+2396304 T^{4} + 7704 T^{2} + 2396304 Copy content Toggle raw display
7373 (T2104T+760)2 (T^{2} - 104 T + 760)^{2} Copy content Toggle raw display
7979 T414T3++1692601 T^{4} - 14 T^{3} + \cdots + 1692601 Copy content Toggle raw display
8383 T4378T3++131262849 T^{4} - 378 T^{3} + \cdots + 131262849 Copy content Toggle raw display
8989 T4+22824T2+36144144 T^{4} + 22824 T^{2} + 36144144 Copy content Toggle raw display
9797 T4+14T3++110986225 T^{4} + 14 T^{3} + \cdots + 110986225 Copy content Toggle raw display
show more
show less