gp: [N,k,chi] = [450,3,Mod(101,450)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(450, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("450.101");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 2 x 2 + 4 x^{4} - 2x^{2} + 4 x 4 − 2 x 2 + 4
x^4 - 2*x^2 + 4
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 2 ( \nu^{2} ) / 2 ( ν 2 ) / 2
(v^2) / 2
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 2 ( \nu^{3} ) / 2 ( ν 3 ) / 2
(v^3) / 2
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
2 β 2 2\beta_{2} 2 β 2
2*b2
ν 3 \nu^{3} ν 3 = = =
2 β 3 2\beta_{3} 2 β 3
2*b3
Character values
We give the values of χ \chi χ on generators for ( Z / 450 Z ) × \left(\mathbb{Z}/450\mathbb{Z}\right)^\times ( Z / 4 5 0 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 − β 2 1 - \beta_{2} 1 − β 2
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 4 + 2 T 7 3 + 57 T 7 2 − 106 T 7 + 2809 T_{7}^{4} + 2T_{7}^{3} + 57T_{7}^{2} - 106T_{7} + 2809 T 7 4 + 2 T 7 3 + 5 7 T 7 2 − 1 0 6 T 7 + 2 8 0 9
T7^4 + 2*T7^3 + 57*T7^2 - 106*T7 + 2809
acting on S 3 n e w ( 450 , [ χ ] ) S_{3}^{\mathrm{new}}(450, [\chi]) S 3 n e w ( 4 5 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 − 2 T 2 + 4 T^{4} - 2T^{2} + 4 T 4 − 2 T 2 + 4
T^4 - 2*T^2 + 4
3 3 3
T 4 − 6 T 2 + 81 T^{4} - 6T^{2} + 81 T 4 − 6 T 2 + 8 1
T^4 - 6*T^2 + 81
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 2 T 3 + ⋯ + 2809 T^{4} + 2 T^{3} + \cdots + 2809 T 4 + 2 T 3 + ⋯ + 2 8 0 9
T^4 + 2*T^3 + 57*T^2 - 106*T + 2809
11 11 1 1
T 4 − 18 T 3 + ⋯ + 81 T^{4} - 18 T^{3} + \cdots + 81 T 4 − 1 8 T 3 + ⋯ + 8 1
T^4 - 18*T^3 + 117*T^2 - 162*T + 81
13 13 1 3
T 4 − 10 T 3 + ⋯ + 36481 T^{4} - 10 T^{3} + \cdots + 36481 T 4 − 1 0 T 3 + ⋯ + 3 6 4 8 1
T^4 - 10*T^3 + 291*T^2 + 1910*T + 36481
17 17 1 7
T 4 + 360 T 2 + 1296 T^{4} + 360T^{2} + 1296 T 4 + 3 6 0 T 2 + 1 2 9 6
T^4 + 360*T^2 + 1296
19 19 1 9
( T 2 + 20 T − 116 ) 2 (T^{2} + 20 T - 116)^{2} ( T 2 + 2 0 T − 1 1 6 ) 2
(T^2 + 20*T - 116)^2
23 23 2 3
T 4 + 18 T 3 + ⋯ + 81 T^{4} + 18 T^{3} + \cdots + 81 T 4 + 1 8 T 3 + ⋯ + 8 1
T^4 + 18*T^3 + 117*T^2 + 162*T + 81
29 29 2 9
T 4 − 18 T 3 + ⋯ + 2025 T^{4} - 18 T^{3} + \cdots + 2025 T 4 − 1 8 T 3 + ⋯ + 2 0 2 5
T^4 - 18*T^3 + 63*T^2 + 810*T + 2025
31 31 3 1
T 4 − 38 T 3 + ⋯ + 15625 T^{4} - 38 T^{3} + \cdots + 15625 T 4 − 3 8 T 3 + ⋯ + 1 5 6 2 5
T^4 - 38*T^3 + 1569*T^2 + 4750*T + 15625
37 37 3 7
( T 2 + 64 T + 808 ) 2 (T^{2} + 64 T + 808)^{2} ( T 2 + 6 4 T + 8 0 8 ) 2
(T^2 + 64*T + 808)^2
41 41 4 1
T 4 + 126 T 3 + ⋯ + 455625 T^{4} + 126 T^{3} + \cdots + 455625 T 4 + 1 2 6 T 3 + ⋯ + 4 5 5 6 2 5
T^4 + 126*T^3 + 5967*T^2 + 85050*T + 455625
43 43 4 3
T 4 − 46 T 3 + ⋯ + 1849 T^{4} - 46 T^{3} + \cdots + 1849 T 4 − 4 6 T 3 + ⋯ + 1 8 4 9
T^4 - 46*T^3 + 2073*T^2 - 1978*T + 1849
47 47 4 7
T 4 + 54 T 3 + ⋯ + 408321 T^{4} + 54 T^{3} + \cdots + 408321 T 4 + 5 4 T 3 + ⋯ + 4 0 8 3 2 1
T^4 + 54*T^3 + 333*T^2 - 34506*T + 408321
53 53 5 3
T 4 + 9000 T 2 + 810000 T^{4} + 9000 T^{2} + 810000 T 4 + 9 0 0 0 T 2 + 8 1 0 0 0 0
T^4 + 9000*T^2 + 810000
59 59 5 9
T 4 − 126 T 3 + ⋯ + 2954961 T^{4} - 126 T^{3} + \cdots + 2954961 T 4 − 1 2 6 T 3 + ⋯ + 2 9 5 4 9 6 1
T^4 - 126*T^3 + 3573*T^2 + 216594*T + 2954961
61 61 6 1
T 4 − 62 T 3 + ⋯ + 966289 T^{4} - 62 T^{3} + \cdots + 966289 T 4 − 6 2 T 3 + ⋯ + 9 6 6 2 8 9
T^4 - 62*T^3 + 4827*T^2 + 60946*T + 966289
67 67 6 7
T 4 − 106 T 3 + ⋯ + 5396329 T^{4} - 106 T^{3} + \cdots + 5396329 T 4 − 1 0 6 T 3 + ⋯ + 5 3 9 6 3 2 9
T^4 - 106*T^3 + 8913*T^2 - 246238*T + 5396329
71 71 7 1
T 4 + 7704 T 2 + 2396304 T^{4} + 7704 T^{2} + 2396304 T 4 + 7 7 0 4 T 2 + 2 3 9 6 3 0 4
T^4 + 7704*T^2 + 2396304
73 73 7 3
( T 2 − 104 T + 760 ) 2 (T^{2} - 104 T + 760)^{2} ( T 2 − 1 0 4 T + 7 6 0 ) 2
(T^2 - 104*T + 760)^2
79 79 7 9
T 4 − 14 T 3 + ⋯ + 1692601 T^{4} - 14 T^{3} + \cdots + 1692601 T 4 − 1 4 T 3 + ⋯ + 1 6 9 2 6 0 1
T^4 - 14*T^3 + 1497*T^2 + 18214*T + 1692601
83 83 8 3
T 4 − 378 T 3 + ⋯ + 131262849 T^{4} - 378 T^{3} + \cdots + 131262849 T 4 − 3 7 8 T 3 + ⋯ + 1 3 1 2 6 2 8 4 9
T^4 - 378*T^3 + 59085*T^2 - 4330746*T + 131262849
89 89 8 9
T 4 + 22824 T 2 + 36144144 T^{4} + 22824 T^{2} + 36144144 T 4 + 2 2 8 2 4 T 2 + 3 6 1 4 4 1 4 4
T^4 + 22824*T^2 + 36144144
97 97 9 7
T 4 + 14 T 3 + ⋯ + 110986225 T^{4} + 14 T^{3} + \cdots + 110986225 T 4 + 1 4 T 3 + ⋯ + 1 1 0 9 8 6 2 2 5
T^4 + 14*T^3 + 10731*T^2 - 147490*T + 110986225
show more
show less