L(s) = 1 | − 18·5-s − 2·7-s + 6·9-s − 18·11-s − 10·13-s + 40·19-s − 18·23-s + 139·25-s + 18·29-s − 38·31-s + 36·35-s + 128·37-s − 126·41-s + 46·43-s − 108·45-s − 54·47-s + 45·49-s + 324·55-s − 126·59-s + 62·61-s − 12·63-s + 180·65-s + 106·67-s − 208·73-s + 36·77-s − 14·79-s − 45·81-s + ⋯ |
L(s) = 1 | − 3.59·5-s − 2/7·7-s + 2/3·9-s − 1.63·11-s − 0.769·13-s + 2.10·19-s − 0.782·23-s + 5.55·25-s + 0.620·29-s − 1.22·31-s + 1.02·35-s + 3.45·37-s − 3.07·41-s + 1.06·43-s − 2.39·45-s − 1.14·47-s + 0.918·49-s + 5.89·55-s − 2.13·59-s + 1.01·61-s − 0.190·63-s + 2.76·65-s + 1.58·67-s − 2.84·73-s + 0.467·77-s − 0.177·79-s − 5/9·81-s + ⋯ |
Λ(s)=(=((216⋅38)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅38)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅38
|
Sign: |
1
|
Analytic conductor: |
237.022 |
Root analytic conductor: |
1.98083 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅38, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.2438540205 |
L(21) |
≈ |
0.2438540205 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1−2pT2+p4T4 |
good | 5 | C22 | (1+9T+52T2+9p2T3+p4T4)2 |
| 7 | D4×C2 | 1+2T−41T2−106T3−572T4−106p2T5−41p4T6+2p6T7+p8T8 |
| 11 | D4×C2 | 1+18T+359T2+4518T3+61428T4+4518p2T5+359p4T6+18p6T7+p8T8 |
| 13 | D4×C2 | 1+10T−47T2−1910T3−23852T4−1910p2T5−47p4T6+10p6T7+p8T8 |
| 17 | D4×C2 | 1−796T2+294342T4−796p4T6+p8T8 |
| 19 | D4 | (1−20T+606T2−20p2T3+p4T4)2 |
| 23 | D4×C2 | 1+18T+1175T2+19206T3+915780T4+19206p2T5+1175p4T6+18p6T7+p8T8 |
| 29 | D4×C2 | 1−18T+1745T2−29466T3+2063316T4−29466p2T5+1745p4T6−18p6T7+p8T8 |
| 31 | D4×C2 | 1+38T−353T2−4750T3+918004T4−4750p2T5−353p4T6+38p6T7+p8T8 |
| 37 | D4 | (1−64T+3546T2−64p2T3+p4T4)2 |
| 41 | D4×C2 | 1+126T+9329T2+508662T3+22367460T4+508662p2T5+9329p4T6+126p6T7+p8T8 |
| 43 | D4×C2 | 1−46T−1625T2−46pT3+3604p2T4−46p3T5−1625p4T6−46p6T7+p8T8 |
| 47 | D4×C2 | 1+54T+4751T2+204066T3+11548308T4+204066p2T5+4751p4T6+54p6T7+p8T8 |
| 53 | D4×C2 | 1−2236T2−2409114T4−2236p4T6+p8T8 |
| 59 | D4×C2 | 1+126T+10535T2+660618T3+33793140T4+660618p2T5+10535p4T6+126p6T7+p8T8 |
| 61 | D4×C2 | 1−62T−2615T2+60946T3+13569316T4+60946p2T5−2615p4T6−62p6T7+p8T8 |
| 67 | D4×C2 | 1−106T−65T2−246238T3+57123076T4−246238p2T5−65p4T6−106p6T7+p8T8 |
| 71 | D4×C2 | 1−12460T2+77194662T4−12460p4T6+p8T8 |
| 73 | D4 | (1+104T+11418T2+104p2T3+p4T4)2 |
| 79 | D4×C2 | 1+14T−10985T2−18214T3+84841444T4−18214p2T5−10985p4T6+14p6T7+p8T8 |
| 83 | D4×C2 | 1−378T+72863T2−9538830T3+917456196T4−9538830p2T5+72863p4T6−378p6T7+p8T8 |
| 89 | D4×C2 | 1−8860T2+51019782T4−8860p4T6+p8T8 |
| 97 | D4×C2 | 1−14T−8087T2+147490T3−21765356T4+147490p2T5−8087p4T6−14p6T7+p8T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.360792969584319585403220389594, −9.088942613404189964053084332492, −8.851959238502752369320578238840, −8.086147724185144064846346225606, −8.031322823126616782190067622453, −7.983251700254422522710477324063, −7.83479549471841972144866279190, −7.57719767346730460336213020282, −7.28474345165809796533211691652, −6.89168188208284409090052918462, −6.83878757895171972935704247588, −6.24914464636957940769422695232, −5.75716243159949674768872300727, −5.35216484770036810621889406606, −5.22030790239369887826294440978, −4.56958643147551926490471684925, −4.45162547544470042864514415365, −4.24640654739287124804145749730, −3.70185427456299874378854740897, −3.32261068894178789500529427228, −3.23886559272518401240426636071, −2.69396914812535854176709091210, −2.02762009226977346469245053078, −0.925777670434345044508533533931, −0.23865681734576980419040911121,
0.23865681734576980419040911121, 0.925777670434345044508533533931, 2.02762009226977346469245053078, 2.69396914812535854176709091210, 3.23886559272518401240426636071, 3.32261068894178789500529427228, 3.70185427456299874378854740897, 4.24640654739287124804145749730, 4.45162547544470042864514415365, 4.56958643147551926490471684925, 5.22030790239369887826294440978, 5.35216484770036810621889406606, 5.75716243159949674768872300727, 6.24914464636957940769422695232, 6.83878757895171972935704247588, 6.89168188208284409090052918462, 7.28474345165809796533211691652, 7.57719767346730460336213020282, 7.83479549471841972144866279190, 7.983251700254422522710477324063, 8.031322823126616782190067622453, 8.086147724185144064846346225606, 8.851959238502752369320578238840, 9.088942613404189964053084332492, 9.360792969584319585403220389594