L(s) = 1 | + 5.19i·5-s + 8.34·7-s − 0.953i·11-s − 9.69·13-s + 18.8i·17-s + 24.6·19-s + 0.953i·23-s − 2·25-s + 13.6i·29-s − 3.04·31-s + 43.3i·35-s + 46.6·37-s + 10.9i·41-s − 45.0·43-s − 45.2i·47-s + ⋯ |
L(s) = 1 | + 1.03i·5-s + 1.19·7-s − 0.0866i·11-s − 0.745·13-s + 1.11i·17-s + 1.29·19-s + 0.0414i·23-s − 0.0800·25-s + 0.471i·29-s − 0.0982·31-s + 1.23i·35-s + 1.26·37-s + 0.266i·41-s − 1.04·43-s − 0.963i·47-s + ⋯ |
Λ(s)=(=(1296s/2ΓC(s)L(s)−iΛ(3−s)
Λ(s)=(=(1296s/2ΓC(s+1)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
1296
= 24⋅34
|
Sign: |
−i
|
Analytic conductor: |
35.3134 |
Root analytic conductor: |
5.94251 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1296(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1296, ( :1), −i)
|
Particular Values
L(23) |
≈ |
2.078630240 |
L(21) |
≈ |
2.078630240 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−5.19iT−25T2 |
| 7 | 1−8.34T+49T2 |
| 11 | 1+0.953iT−121T2 |
| 13 | 1+9.69T+169T2 |
| 17 | 1−18.8iT−289T2 |
| 19 | 1−24.6T+361T2 |
| 23 | 1−0.953iT−529T2 |
| 29 | 1−13.6iT−841T2 |
| 31 | 1+3.04T+961T2 |
| 37 | 1−46.6T+1.36e3T2 |
| 41 | 1−10.9iT−1.68e3T2 |
| 43 | 1+45.0T+1.84e3T2 |
| 47 | 1+45.2iT−2.20e3T2 |
| 53 | 1−94.3iT−2.80e3T2 |
| 59 | 1+18.7iT−3.48e3T2 |
| 61 | 1−13.0T+3.72e3T2 |
| 67 | 1+75.0T+4.48e3T2 |
| 71 | 1−18.0iT−5.04e3T2 |
| 73 | 1+7.90T+5.32e3T2 |
| 79 | 1−43.7T+6.24e3T2 |
| 83 | 1−130.iT−6.88e3T2 |
| 89 | 1+145.iT−7.92e3T2 |
| 97 | 1+109.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.817958649565682052190245828312, −8.789811505947656660025757661007, −7.87160936508362327592657273251, −7.35935864449500353002217562485, −6.42479732401661562307382833439, −5.45078866833320293781740234946, −4.60477279413183678912692375328, −3.47557114106265314696308564854, −2.48722870255257886592539478473, −1.33684776117530933015748656369,
0.64340256405058581337037716440, 1.70575107382543915709252610797, 2.94982430615021434405385558993, 4.42843610949763959023458787702, 4.94997701080550235673402033966, 5.60357807915222880898435233247, 6.99312856079008830524280973265, 7.76910173288777908949374559533, 8.365619893364197789143178451909, 9.347132788772198388676182642153