L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.366 − 0.633i)3-s + (0.499 − 0.866i)4-s + i·5-s + (0.633 + 0.366i)6-s + (2.59 + 1.5i)7-s + 0.999i·8-s + (1.23 − 2.13i)9-s + (−0.5 − 0.866i)10-s + (2.59 − 1.5i)11-s − 0.732·12-s + (3.5 + 0.866i)13-s − 3·14-s + (0.633 − 0.366i)15-s + (−0.5 − 0.866i)16-s + (−4.09 + 7.09i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.211 − 0.366i)3-s + (0.249 − 0.433i)4-s + 0.447i·5-s + (0.258 + 0.149i)6-s + (0.981 + 0.566i)7-s + 0.353i·8-s + (0.410 − 0.711i)9-s + (−0.158 − 0.273i)10-s + (0.783 − 0.452i)11-s − 0.211·12-s + (0.970 + 0.240i)13-s − 0.801·14-s + (0.163 − 0.0945i)15-s + (−0.125 − 0.216i)16-s + (−0.993 + 1.72i)17-s + ⋯ |
Λ(s)=(=(130s/2ΓC(s)L(s)(0.964−0.265i)Λ(2−s)
Λ(s)=(=(130s/2ΓC(s+1/2)L(s)(0.964−0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
130
= 2⋅5⋅13
|
Sign: |
0.964−0.265i
|
Analytic conductor: |
1.03805 |
Root analytic conductor: |
1.01884 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ130(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 130, ( :1/2), 0.964−0.265i)
|
Particular Values
L(1) |
≈ |
0.866281+0.116874i |
L(21) |
≈ |
0.866281+0.116874i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 5 | 1−iT |
| 13 | 1+(−3.5−0.866i)T |
good | 3 | 1+(0.366+0.633i)T+(−1.5+2.59i)T2 |
| 7 | 1+(−2.59−1.5i)T+(3.5+6.06i)T2 |
| 11 | 1+(−2.59+1.5i)T+(5.5−9.52i)T2 |
| 17 | 1+(4.09−7.09i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.401+0.232i)T+(9.5+16.4i)T2 |
| 23 | 1+(4.73+8.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.26−2.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+4.73iT−31T2 |
| 37 | 1+(0.696−0.401i)T+(18.5−32.0i)T2 |
| 41 | 1+(9−5.19i)T+(20.5−35.5i)T2 |
| 43 | 1+(1−1.73i)T+(−21.5−37.2i)T2 |
| 47 | 1+3iT−47T2 |
| 53 | 1−0.464T+53T2 |
| 59 | 1+(−9−5.19i)T+(29.5+51.0i)T2 |
| 61 | 1+(3.09−5.36i)T+(−30.5−52.8i)T2 |
| 67 | 1+(33.5−58.0i)T2 |
| 71 | 1+(5.19+3i)T+(35.5+61.4i)T2 |
| 73 | 1+11.6iT−73T2 |
| 79 | 1+4.19T+79T2 |
| 83 | 1−8.19iT−83T2 |
| 89 | 1+(−5.89+3.40i)T+(44.5−77.0i)T2 |
| 97 | 1+(−7.90−4.56i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.41087801307522123354666433413, −12.10270905431703890984230128258, −11.26924998963423644375373818350, −10.32401655821139050957277387053, −8.811301885522161806246933870043, −8.255465819569279081369416427980, −6.61392585311012895962959764281, −6.10361021065949761062404583891, −4.11243522165841246154540440590, −1.73049891669617410671528272357,
1.64170616099128021979535656547, 4.01592167938776934834061317335, 5.13314679161140245856225262785, 7.02761420502294060023201411231, 8.052891047627317324138043260733, 9.177437026845674059168669774180, 10.18823552287621849241617557095, 11.24143945034493389253295960369, 11.81272724583241790205629408988, 13.35431885580636845362666310962