L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.366 − 0.633i)3-s + (0.499 − 0.866i)4-s + i·5-s + (0.633 + 0.366i)6-s + (2.59 + 1.5i)7-s + 0.999i·8-s + (1.23 − 2.13i)9-s + (−0.5 − 0.866i)10-s + (2.59 − 1.5i)11-s − 0.732·12-s + (3.5 + 0.866i)13-s − 3·14-s + (0.633 − 0.366i)15-s + (−0.5 − 0.866i)16-s + (−4.09 + 7.09i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.211 − 0.366i)3-s + (0.249 − 0.433i)4-s + 0.447i·5-s + (0.258 + 0.149i)6-s + (0.981 + 0.566i)7-s + 0.353i·8-s + (0.410 − 0.711i)9-s + (−0.158 − 0.273i)10-s + (0.783 − 0.452i)11-s − 0.211·12-s + (0.970 + 0.240i)13-s − 0.801·14-s + (0.163 − 0.0945i)15-s + (−0.125 − 0.216i)16-s + (−0.993 + 1.72i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.866281 + 0.116874i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.866281 + 0.116874i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + (-3.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.366 + 0.633i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-2.59 - 1.5i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.59 + 1.5i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (4.09 - 7.09i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.401 + 0.232i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.73 + 8.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.26 - 2.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.73iT - 31T^{2} \) |
| 37 | \( 1 + (0.696 - 0.401i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (9 - 5.19i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1 - 1.73i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 3iT - 47T^{2} \) |
| 53 | \( 1 - 0.464T + 53T^{2} \) |
| 59 | \( 1 + (-9 - 5.19i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.09 - 5.36i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.19 + 3i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 11.6iT - 73T^{2} \) |
| 79 | \( 1 + 4.19T + 79T^{2} \) |
| 83 | \( 1 - 8.19iT - 83T^{2} \) |
| 89 | \( 1 + (-5.89 + 3.40i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.90 - 4.56i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.41087801307522123354666433413, −12.10270905431703890984230128258, −11.26924998963423644375373818350, −10.32401655821139050957277387053, −8.811301885522161806246933870043, −8.255465819569279081369416427980, −6.61392585311012895962959764281, −6.10361021065949761062404583891, −4.11243522165841246154540440590, −1.73049891669617410671528272357,
1.64170616099128021979535656547, 4.01592167938776934834061317335, 5.13314679161140245856225262785, 7.02761420502294060023201411231, 8.052891047627317324138043260733, 9.177437026845674059168669774180, 10.18823552287621849241617557095, 11.24143945034493389253295960369, 11.81272724583241790205629408988, 13.35431885580636845362666310962