Properties

Label 130.2.l.a
Level 130130
Weight 22
Character orbit 130.l
Analytic conductor 1.0381.038
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [130,2,Mod(101,130)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(130, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("130.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 130=2513 130 = 2 \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 130.l (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.038055226281.03805522628
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ12q2+(2ζ123ζ122++1)q3+ζ122q4+ζ123q5+(ζ123ζ122++2)q6+(3ζ1233ζ12)q7++(3ζ123+12ζ1226)q99+O(q100) q + \zeta_{12} q^{2} + ( - 2 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 1) q^{3} + \zeta_{12}^{2} q^{4} + \zeta_{12}^{3} q^{5} + ( - \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{6} + (3 \zeta_{12}^{3} - 3 \zeta_{12}) q^{7}+ \cdots + (3 \zeta_{12}^{3} + 12 \zeta_{12}^{2} - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q3+2q4+6q62q92q10+4q12+14q1312q14+6q152q166q1712q196q2212q23+6q244q2516q27+12q29++42q97+O(q100) 4 q + 2 q^{3} + 2 q^{4} + 6 q^{6} - 2 q^{9} - 2 q^{10} + 4 q^{12} + 14 q^{13} - 12 q^{14} + 6 q^{15} - 2 q^{16} - 6 q^{17} - 12 q^{19} - 6 q^{22} - 12 q^{23} + 6 q^{24} - 4 q^{25} - 16 q^{27} + 12 q^{29}+ \cdots + 42 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/130Z)×\left(\mathbb{Z}/130\mathbb{Z}\right)^\times.

nn 2727 4141
χ(n)\chi(n) 11 ζ122\zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
101.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i −0.366025 0.633975i 0.500000 0.866025i 1.00000i 0.633975 + 0.366025i 2.59808 + 1.50000i 1.00000i 1.23205 2.13397i −0.500000 0.866025i
101.2 0.866025 0.500000i 1.36603 + 2.36603i 0.500000 0.866025i 1.00000i 2.36603 + 1.36603i −2.59808 1.50000i 1.00000i −2.23205 + 3.86603i −0.500000 0.866025i
121.1 −0.866025 0.500000i −0.366025 + 0.633975i 0.500000 + 0.866025i 1.00000i 0.633975 0.366025i 2.59808 1.50000i 1.00000i 1.23205 + 2.13397i −0.500000 + 0.866025i
121.2 0.866025 + 0.500000i 1.36603 2.36603i 0.500000 + 0.866025i 1.00000i 2.36603 1.36603i −2.59808 + 1.50000i 1.00000i −2.23205 3.86603i −0.500000 + 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 130.2.l.a 4
3.b odd 2 1 1170.2.bs.c 4
4.b odd 2 1 1040.2.da.a 4
5.b even 2 1 650.2.m.a 4
5.c odd 4 1 650.2.n.a 4
5.c odd 4 1 650.2.n.b 4
13.b even 2 1 1690.2.l.g 4
13.c even 3 1 1690.2.d.f 4
13.c even 3 1 1690.2.l.g 4
13.d odd 4 1 1690.2.e.l 4
13.d odd 4 1 1690.2.e.n 4
13.e even 6 1 inner 130.2.l.a 4
13.e even 6 1 1690.2.d.f 4
13.f odd 12 1 1690.2.a.j 2
13.f odd 12 1 1690.2.a.m 2
13.f odd 12 1 1690.2.e.l 4
13.f odd 12 1 1690.2.e.n 4
39.h odd 6 1 1170.2.bs.c 4
52.i odd 6 1 1040.2.da.a 4
65.l even 6 1 650.2.m.a 4
65.r odd 12 1 650.2.n.a 4
65.r odd 12 1 650.2.n.b 4
65.s odd 12 1 8450.2.a.bf 2
65.s odd 12 1 8450.2.a.bm 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.l.a 4 1.a even 1 1 trivial
130.2.l.a 4 13.e even 6 1 inner
650.2.m.a 4 5.b even 2 1
650.2.m.a 4 65.l even 6 1
650.2.n.a 4 5.c odd 4 1
650.2.n.a 4 65.r odd 12 1
650.2.n.b 4 5.c odd 4 1
650.2.n.b 4 65.r odd 12 1
1040.2.da.a 4 4.b odd 2 1
1040.2.da.a 4 52.i odd 6 1
1170.2.bs.c 4 3.b odd 2 1
1170.2.bs.c 4 39.h odd 6 1
1690.2.a.j 2 13.f odd 12 1
1690.2.a.m 2 13.f odd 12 1
1690.2.d.f 4 13.c even 3 1
1690.2.d.f 4 13.e even 6 1
1690.2.e.l 4 13.d odd 4 1
1690.2.e.l 4 13.f odd 12 1
1690.2.e.n 4 13.d odd 4 1
1690.2.e.n 4 13.f odd 12 1
1690.2.l.g 4 13.b even 2 1
1690.2.l.g 4 13.c even 3 1
8450.2.a.bf 2 65.s odd 12 1
8450.2.a.bm 2 65.s odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T342T33+6T32+4T3+4 T_{3}^{4} - 2T_{3}^{3} + 6T_{3}^{2} + 4T_{3} + 4 acting on S2new(130,[χ])S_{2}^{\mathrm{new}}(130, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
1111 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
1313 (T27T+13)2 (T^{2} - 7 T + 13)^{2} Copy content Toggle raw display
1717 T4+6T3++324 T^{4} + 6 T^{3} + \cdots + 324 Copy content Toggle raw display
1919 T4+12T3++9 T^{4} + 12 T^{3} + \cdots + 9 Copy content Toggle raw display
2323 T4+12T3++576 T^{4} + 12 T^{3} + \cdots + 576 Copy content Toggle raw display
2929 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
3131 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
3737 T418T3++81 T^{4} - 18 T^{3} + \cdots + 81 Copy content Toggle raw display
4141 (T2+18T+108)2 (T^{2} + 18 T + 108)^{2} Copy content Toggle raw display
4343 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
4747 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
5353 (T2+6T3)2 (T^{2} + 6 T - 3)^{2} Copy content Toggle raw display
5959 (T218T+108)2 (T^{2} - 18 T + 108)^{2} Copy content Toggle raw display
6161 T4+2T3++676 T^{4} + 2 T^{3} + \cdots + 676 Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
7373 T4+168T2+4356 T^{4} + 168T^{2} + 4356 Copy content Toggle raw display
7979 (T22T26)2 (T^{2} - 2 T - 26)^{2} Copy content Toggle raw display
8383 T4+72T2+324 T^{4} + 72T^{2} + 324 Copy content Toggle raw display
8989 T4+18T3++13689 T^{4} + 18 T^{3} + \cdots + 13689 Copy content Toggle raw display
9797 T442T3++19044 T^{4} - 42 T^{3} + \cdots + 19044 Copy content Toggle raw display
show more
show less