Properties

Label 130.2.l.a
Level $130$
Weight $2$
Character orbit 130.l
Analytic conductor $1.038$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [130,2,Mod(101,130)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(130, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("130.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} + ( - 2 \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 1) q^{3} + \zeta_{12}^{2} q^{4} + \zeta_{12}^{3} q^{5} + ( - \zeta_{12}^{3} - \zeta_{12}^{2} + \cdots + 2) q^{6} + (3 \zeta_{12}^{3} - 3 \zeta_{12}) q^{7}+ \cdots + (3 \zeta_{12}^{3} + 12 \zeta_{12}^{2} - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 2 q^{4} + 6 q^{6} - 2 q^{9} - 2 q^{10} + 4 q^{12} + 14 q^{13} - 12 q^{14} + 6 q^{15} - 2 q^{16} - 6 q^{17} - 12 q^{19} - 6 q^{22} - 12 q^{23} + 6 q^{24} - 4 q^{25} - 16 q^{27} + 12 q^{29}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i −0.366025 0.633975i 0.500000 0.866025i 1.00000i 0.633975 + 0.366025i 2.59808 + 1.50000i 1.00000i 1.23205 2.13397i −0.500000 0.866025i
101.2 0.866025 0.500000i 1.36603 + 2.36603i 0.500000 0.866025i 1.00000i 2.36603 + 1.36603i −2.59808 1.50000i 1.00000i −2.23205 + 3.86603i −0.500000 0.866025i
121.1 −0.866025 0.500000i −0.366025 + 0.633975i 0.500000 + 0.866025i 1.00000i 0.633975 0.366025i 2.59808 1.50000i 1.00000i 1.23205 + 2.13397i −0.500000 + 0.866025i
121.2 0.866025 + 0.500000i 1.36603 2.36603i 0.500000 + 0.866025i 1.00000i 2.36603 1.36603i −2.59808 + 1.50000i 1.00000i −2.23205 3.86603i −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 130.2.l.a 4
3.b odd 2 1 1170.2.bs.c 4
4.b odd 2 1 1040.2.da.a 4
5.b even 2 1 650.2.m.a 4
5.c odd 4 1 650.2.n.a 4
5.c odd 4 1 650.2.n.b 4
13.b even 2 1 1690.2.l.g 4
13.c even 3 1 1690.2.d.f 4
13.c even 3 1 1690.2.l.g 4
13.d odd 4 1 1690.2.e.l 4
13.d odd 4 1 1690.2.e.n 4
13.e even 6 1 inner 130.2.l.a 4
13.e even 6 1 1690.2.d.f 4
13.f odd 12 1 1690.2.a.j 2
13.f odd 12 1 1690.2.a.m 2
13.f odd 12 1 1690.2.e.l 4
13.f odd 12 1 1690.2.e.n 4
39.h odd 6 1 1170.2.bs.c 4
52.i odd 6 1 1040.2.da.a 4
65.l even 6 1 650.2.m.a 4
65.r odd 12 1 650.2.n.a 4
65.r odd 12 1 650.2.n.b 4
65.s odd 12 1 8450.2.a.bf 2
65.s odd 12 1 8450.2.a.bm 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.l.a 4 1.a even 1 1 trivial
130.2.l.a 4 13.e even 6 1 inner
650.2.m.a 4 5.b even 2 1
650.2.m.a 4 65.l even 6 1
650.2.n.a 4 5.c odd 4 1
650.2.n.a 4 65.r odd 12 1
650.2.n.b 4 5.c odd 4 1
650.2.n.b 4 65.r odd 12 1
1040.2.da.a 4 4.b odd 2 1
1040.2.da.a 4 52.i odd 6 1
1170.2.bs.c 4 3.b odd 2 1
1170.2.bs.c 4 39.h odd 6 1
1690.2.a.j 2 13.f odd 12 1
1690.2.a.m 2 13.f odd 12 1
1690.2.d.f 4 13.c even 3 1
1690.2.d.f 4 13.e even 6 1
1690.2.e.l 4 13.d odd 4 1
1690.2.e.l 4 13.f odd 12 1
1690.2.e.n 4 13.d odd 4 1
1690.2.e.n 4 13.f odd 12 1
1690.2.l.g 4 13.b even 2 1
1690.2.l.g 4 13.c even 3 1
8450.2.a.bf 2 65.s odd 12 1
8450.2.a.bm 2 65.s odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 2T_{3}^{3} + 6T_{3}^{2} + 4T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(130, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$11$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$13$ \( (T^{2} - 7 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 6 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$19$ \( T^{4} + 12 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( T^{4} + 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$29$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$31$ \( T^{4} + 24T^{2} + 36 \) Copy content Toggle raw display
$37$ \( T^{4} - 18 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$41$ \( (T^{2} + 18 T + 108)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 6 T - 3)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 18 T + 108)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + \cdots + 676 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$73$ \( T^{4} + 168T^{2} + 4356 \) Copy content Toggle raw display
$79$ \( (T^{2} - 2 T - 26)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 72T^{2} + 324 \) Copy content Toggle raw display
$89$ \( T^{4} + 18 T^{3} + \cdots + 13689 \) Copy content Toggle raw display
$97$ \( T^{4} - 42 T^{3} + \cdots + 19044 \) Copy content Toggle raw display
show more
show less