L(s) = 1 | − 0.517i·2-s + 1.73·4-s + 5-s + 0.732·7-s − 1.93i·8-s − 0.517i·10-s + 5.27i·11-s − 1.46·13-s − 0.378i·14-s + 2.46·16-s − 6.31i·17-s + 4.24i·19-s + 1.73·20-s + 2.73·22-s + 8.19·23-s + ⋯ |
L(s) = 1 | − 0.366i·2-s + 0.866·4-s + 0.447·5-s + 0.276·7-s − 0.683i·8-s − 0.163i·10-s + 1.59i·11-s − 0.406·13-s − 0.101i·14-s + 0.616·16-s − 1.53i·17-s + 0.973i·19-s + 0.387·20-s + 0.582·22-s + 1.70·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.262i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 + 0.262i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.395837520\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.395837520\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 29 | \( 1 + (-5.19 - 1.41i)T \) |
good | 2 | \( 1 + 0.517iT - 2T^{2} \) |
| 7 | \( 1 - 0.732T + 7T^{2} \) |
| 11 | \( 1 - 5.27iT - 11T^{2} \) |
| 13 | \( 1 + 1.46T + 13T^{2} \) |
| 17 | \( 1 + 6.31iT - 17T^{2} \) |
| 19 | \( 1 - 4.24iT - 19T^{2} \) |
| 23 | \( 1 - 8.19T + 23T^{2} \) |
| 31 | \( 1 - 4.24iT - 31T^{2} \) |
| 37 | \( 1 + 4.24iT - 37T^{2} \) |
| 41 | \( 1 + 8.76iT - 41T^{2} \) |
| 43 | \( 1 - 4.24iT - 43T^{2} \) |
| 47 | \( 1 - 8.38iT - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 + 3.10iT - 61T^{2} \) |
| 67 | \( 1 - 11.1T + 67T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 1.13iT - 73T^{2} \) |
| 79 | \( 1 + 15.8iT - 79T^{2} \) |
| 83 | \( 1 + 2.19T + 83T^{2} \) |
| 89 | \( 1 + 2.07iT - 89T^{2} \) |
| 97 | \( 1 - 7.34iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.707458107138268132647946684346, −9.090247201310059505531594213825, −7.72037653526070772012876409647, −7.15837899811132855352686026312, −6.51524986976371869489971150388, −5.27082211197452794400160972628, −4.60423143111177424650162524335, −3.16419386654685291055523922478, −2.32544833326335750309346553924, −1.32343538920174694371640696452,
1.19059846704778186101725998641, 2.51888163951511472130820667079, 3.34477138336643196267959678122, 4.80612519147083750021391927206, 5.69670812472436997251163372644, 6.38731141026002586145336221525, 7.05399038328580424735854791316, 8.243335259873889515227940987087, 8.530723771379059900775758159503, 9.696792571180074873440301512654