L(s) = 1 | − 0.517i·2-s + 1.73·4-s + 5-s + 0.732·7-s − 1.93i·8-s − 0.517i·10-s + 5.27i·11-s − 1.46·13-s − 0.378i·14-s + 2.46·16-s − 6.31i·17-s + 4.24i·19-s + 1.73·20-s + 2.73·22-s + 8.19·23-s + ⋯ |
L(s) = 1 | − 0.366i·2-s + 0.866·4-s + 0.447·5-s + 0.276·7-s − 0.683i·8-s − 0.163i·10-s + 1.59i·11-s − 0.406·13-s − 0.101i·14-s + 0.616·16-s − 1.53i·17-s + 0.973i·19-s + 0.387·20-s + 0.582·22-s + 1.70·23-s + ⋯ |
Λ(s)=(=(1305s/2ΓC(s)L(s)(0.964+0.262i)Λ(2−s)
Λ(s)=(=(1305s/2ΓC(s+1/2)L(s)(0.964+0.262i)Λ(1−s)
Degree: |
2 |
Conductor: |
1305
= 32⋅5⋅29
|
Sign: |
0.964+0.262i
|
Analytic conductor: |
10.4204 |
Root analytic conductor: |
3.22807 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1305(811,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1305, ( :1/2), 0.964+0.262i)
|
Particular Values
L(1) |
≈ |
2.395837520 |
L(21) |
≈ |
2.395837520 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
| 29 | 1+(−5.19−1.41i)T |
good | 2 | 1+0.517iT−2T2 |
| 7 | 1−0.732T+7T2 |
| 11 | 1−5.27iT−11T2 |
| 13 | 1+1.46T+13T2 |
| 17 | 1+6.31iT−17T2 |
| 19 | 1−4.24iT−19T2 |
| 23 | 1−8.19T+23T2 |
| 31 | 1−4.24iT−31T2 |
| 37 | 1+4.24iT−37T2 |
| 41 | 1+8.76iT−41T2 |
| 43 | 1−4.24iT−43T2 |
| 47 | 1−8.38iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1+3.10iT−61T2 |
| 67 | 1−11.1T+67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1−1.13iT−73T2 |
| 79 | 1+15.8iT−79T2 |
| 83 | 1+2.19T+83T2 |
| 89 | 1+2.07iT−89T2 |
| 97 | 1−7.34iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.707458107138268132647946684346, −9.090247201310059505531594213825, −7.72037653526070772012876409647, −7.15837899811132855352686026312, −6.51524986976371869489971150388, −5.27082211197452794400160972628, −4.60423143111177424650162524335, −3.16419386654685291055523922478, −2.32544833326335750309346553924, −1.32343538920174694371640696452,
1.19059846704778186101725998641, 2.51888163951511472130820667079, 3.34477138336643196267959678122, 4.80612519147083750021391927206, 5.69670812472436997251163372644, 6.38731141026002586145336221525, 7.05399038328580424735854791316, 8.243335259873889515227940987087, 8.530723771379059900775758159503, 9.696792571180074873440301512654