Properties

Label 1305.2.d.a
Level 13051305
Weight 22
Character orbit 1305.d
Analytic conductor 10.42010.420
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(811,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.811");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1305=32529 1305 = 3^{2} \cdot 5 \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1305.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.420477463810.4204774638
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+4x2+1 x^{4} + 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β2q4+q5+(β21)q7+β3q8+β1q10+(3β3+β1)q11+(2β2+2)q13+(β33β1)q14++(2β3+β1)q98+O(q100) q + \beta_1 q^{2} + \beta_{2} q^{4} + q^{5} + (\beta_{2} - 1) q^{7} + \beta_{3} q^{8} + \beta_1 q^{10} + ( - 3 \beta_{3} + \beta_1) q^{11} + ( - 2 \beta_{2} + 2) q^{13} + (\beta_{3} - 3 \beta_1) q^{14}+ \cdots + ( - 2 \beta_{3} + \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q54q7+8q134q16+4q22+12q23+4q25+12q2820q344q3512q3812q4924q524q5824q5912q62+16q64+8q65++52q94+O(q100) 4 q + 4 q^{5} - 4 q^{7} + 8 q^{13} - 4 q^{16} + 4 q^{22} + 12 q^{23} + 4 q^{25} + 12 q^{28} - 20 q^{34} - 4 q^{35} - 12 q^{38} - 12 q^{49} - 24 q^{52} - 4 q^{58} - 24 q^{59} - 12 q^{62} + 16 q^{64} + 8 q^{65}+ \cdots + 52 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+4x2+1 x^{4} + 4x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2+2 \nu^{2} + 2 Copy content Toggle raw display
β3\beta_{3}== ν3+4ν \nu^{3} + 4\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β22 \beta_{2} - 2 Copy content Toggle raw display
ν3\nu^{3}== β34β1 \beta_{3} - 4\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1305Z)×\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times.

nn 146146 262262 901901
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
811.1
1.93185i
0.517638i
0.517638i
1.93185i
1.93185i 0 −1.73205 1.00000 0 −2.73205 0.517638i 0 1.93185i
811.2 0.517638i 0 1.73205 1.00000 0 0.732051 1.93185i 0 0.517638i
811.3 0.517638i 0 1.73205 1.00000 0 0.732051 1.93185i 0 0.517638i
811.4 1.93185i 0 −1.73205 1.00000 0 −2.73205 0.517638i 0 1.93185i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1305.2.d.a 4
3.b odd 2 1 145.2.c.a 4
12.b even 2 1 2320.2.g.e 4
15.d odd 2 1 725.2.c.d 4
15.e even 4 2 725.2.d.b 8
29.b even 2 1 inner 1305.2.d.a 4
87.d odd 2 1 145.2.c.a 4
87.f even 4 2 4205.2.a.g 4
348.b even 2 1 2320.2.g.e 4
435.b odd 2 1 725.2.c.d 4
435.p even 4 2 725.2.d.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.c.a 4 3.b odd 2 1
145.2.c.a 4 87.d odd 2 1
725.2.c.d 4 15.d odd 2 1
725.2.c.d 4 435.b odd 2 1
725.2.d.b 8 15.e even 4 2
725.2.d.b 8 435.p even 4 2
1305.2.d.a 4 1.a even 1 1 trivial
1305.2.d.a 4 29.b even 2 1 inner
2320.2.g.e 4 12.b even 2 1
2320.2.g.e 4 348.b even 2 1
4205.2.a.g 4 87.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1305,[χ])S_{2}^{\mathrm{new}}(1305, [\chi]):

T24+4T22+1 T_{2}^{4} + 4T_{2}^{2} + 1 Copy content Toggle raw display
T2326T2318 T_{23}^{2} - 6T_{23} - 18 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+4T2+1 T^{4} + 4T^{2} + 1 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T1)4 (T - 1)^{4} Copy content Toggle raw display
77 (T2+2T2)2 (T^{2} + 2 T - 2)^{2} Copy content Toggle raw display
1111 T4+28T2+4 T^{4} + 28T^{2} + 4 Copy content Toggle raw display
1313 (T24T8)2 (T^{2} - 4 T - 8)^{2} Copy content Toggle raw display
1717 T4+52T2+484 T^{4} + 52T^{2} + 484 Copy content Toggle raw display
1919 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
2323 (T26T18)2 (T^{2} - 6 T - 18)^{2} Copy content Toggle raw display
2929 T450T2+841 T^{4} - 50T^{2} + 841 Copy content Toggle raw display
3131 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
3737 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
4141 T4+112T2+2704 T^{4} + 112T^{2} + 2704 Copy content Toggle raw display
4343 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
4747 T4+196T2+8836 T^{4} + 196T^{2} + 8836 Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
6161 T4+144T2+1296 T^{4} + 144T^{2} + 1296 Copy content Toggle raw display
6767 (T2+2T146)2 (T^{2} + 2 T - 146)^{2} Copy content Toggle raw display
7171 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
7373 T4+252T2+324 T^{4} + 252T^{2} + 324 Copy content Toggle raw display
7979 T4+252T2+324 T^{4} + 252T^{2} + 324 Copy content Toggle raw display
8383 (T26T18)2 (T^{2} - 6 T - 18)^{2} Copy content Toggle raw display
8989 T4+64T2+256 T^{4} + 64T^{2} + 256 Copy content Toggle raw display
9797 (T2+54)2 (T^{2} + 54)^{2} Copy content Toggle raw display
show more
show less