L(s) = 1 | − 4·2-s + 4·4-s + 4·5-s + 16·8-s − 6·9-s − 16·10-s + 20·13-s − 64·16-s − 80·17-s + 24·18-s + 16·20-s − 24·25-s − 80·26-s + 112·29-s + 64·32-s + 320·34-s − 24·36-s − 40·37-s + 64·40-s − 8·41-s − 24·45-s − 8·49-s + 96·50-s + 80·52-s + 52·53-s − 448·58-s − 4·61-s + ⋯ |
L(s) = 1 | − 2·2-s + 4-s + 4/5·5-s + 2·8-s − 2/3·9-s − 8/5·10-s + 1.53·13-s − 4·16-s − 4.70·17-s + 4/3·18-s + 4/5·20-s − 0.959·25-s − 3.07·26-s + 3.86·29-s + 2·32-s + 9.41·34-s − 2/3·36-s − 1.08·37-s + 8/5·40-s − 0.195·41-s − 0.533·45-s − 0.163·49-s + 1.91·50-s + 1.53·52-s + 0.981·53-s − 7.72·58-s − 0.0655·61-s + ⋯ |
Λ(s)=(=((28⋅34⋅114)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((28⋅34⋅114)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅34⋅114
|
Sign: |
1
|
Analytic conductor: |
167.353 |
Root analytic conductor: |
1.89650 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅34⋅114, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.4044959014 |
L(21) |
≈ |
0.4044959014 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+pT+p2T2)2 |
| 3 | C2 | (1+pT2)2 |
| 11 | C2 | (1+pT2)2 |
good | 5 | D4 | (1−2T+18T2−2p2T3+p4T4)2 |
| 7 | D4×C2 | 1+8T2+3630T4+8p4T6+p8T8 |
| 13 | D4 | (1−10T+330T2−10p2T3+p4T4)2 |
| 17 | D4 | (1+40T+846T2+40p2T3+p4T4)2 |
| 19 | D4×C2 | 1−628T2+340230T4−628p4T6+p8T8 |
| 23 | D4×C2 | 1−1192T2+771150T4−1192p4T6+p8T8 |
| 29 | D4 | (1−56T+2334T2−56p2T3+p4T4)2 |
| 31 | D4×C2 | 1−292T2+651846T4−292p4T6+p8T8 |
| 37 | D4 | (1+20T+2310T2+20p2T3+p4T4)2 |
| 41 | D4 | (1+4T−1386T2+4p2T3+p4T4)2 |
| 43 | D4×C2 | 1−3844T2+9315174T4−3844p4T6+p8T8 |
| 47 | D4×C2 | 1−6568T2+19677966T4−6568p4T6+p8T8 |
| 53 | D4 | (1−26T+5490T2−26p2T3+p4T4)2 |
| 59 | D4×C2 | 1−6580T2+33519174T4−6580p4T6+p8T8 |
| 61 | D4 | (1+2T+4770T2+2p2T3+p4T4)2 |
| 67 | C22 | (1−5090T2+p4T4)2 |
| 71 | D4×C2 | 1−12616T2+80339214T4−12616p4T6+p8T8 |
| 73 | D4 | (1−124T+9750T2−124p2T3+p4T4)2 |
| 79 | D4×C2 | 1−40pT2−3030738T4−40p5T6+p8T8 |
| 83 | C22 | (1−7970T2+p4T4)2 |
| 89 | D4 | (1+292T+36630T2+292p2T3+p4T4)2 |
| 97 | D4 | (1−304T+40734T2−304p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.601982183708599305463853459271, −9.025409014267321491101276828609, −8.784797082128610098993963790980, −8.755007666286781275135792556189, −8.494129318940361482779672913276, −8.431738694084789791469104744428, −8.285230064489809864411120973835, −7.53236642497542807058389878783, −7.36088472163341506724623016989, −6.96595809543905205644989023848, −6.55932500387201033714313396907, −6.48338041316652082212429707920, −6.22175265381183989063741286740, −5.87530289969919848971704589453, −5.20118511433423897695568674561, −4.77466957829398070274686097400, −4.66607232909690556237524073255, −4.38206677650804563255956093389, −3.88416871261637369566472642143, −3.45213666022171266527022024432, −2.57395257737984768566536002446, −2.13480215132067126613102776406, −2.00484079168505329363101560549, −1.09903719916065301487479286413, −0.40816399520615971761058231308,
0.40816399520615971761058231308, 1.09903719916065301487479286413, 2.00484079168505329363101560549, 2.13480215132067126613102776406, 2.57395257737984768566536002446, 3.45213666022171266527022024432, 3.88416871261637369566472642143, 4.38206677650804563255956093389, 4.66607232909690556237524073255, 4.77466957829398070274686097400, 5.20118511433423897695568674561, 5.87530289969919848971704589453, 6.22175265381183989063741286740, 6.48338041316652082212429707920, 6.55932500387201033714313396907, 6.96595809543905205644989023848, 7.36088472163341506724623016989, 7.53236642497542807058389878783, 8.285230064489809864411120973835, 8.431738694084789791469104744428, 8.494129318940361482779672913276, 8.755007666286781275135792556189, 8.784797082128610098993963790980, 9.025409014267321491101276828609, 9.601982183708599305463853459271